
Fachbereich Physik
Institut für Angewandte
Physik
Laser und Quantenoptik

Connecting Quantum Bits
Building the Classical Channel between Alice and Bob in Quantum Key Distribution
Quantenbits Verbinden
Umsetzung des Klassischen Kanals zwischen Alice und Bob im Quanten-Schlüsselaustausch
Bachelorarbeit von Nico Alt
Tag der Einreichung: 1. August 2022

1. Gutachten: Prof. Dr. Thomas Walther
2. Gutachten: Maximilian Tippmann, M. Sc.
Darmstadt

Connecting Quantum Bits
Building the Classical Channel between Alice and Bob in Quantum Key Distribution

Bachelorarbeit von Nico Alt

Tag der Einreichung: 1. August 2022

Darmstadt

Für alle, die mich einfach mal machen lassen haben.
Para quienes me concedieron la libertad de encontrar mi propio camino.

Erklärung zur Abschlussarbeit gemäß
§22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Nico Alt, die vorliegende Bachelorarbeit gemäß §22 Abs. 7 APB der TU Darmstadt
ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch vorliegt, der dazu führt,
dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten dürfen
nur einmal wiederholt werden.

Darmstadt, 1. August 2022
N. Alt

v

Contents

Glossary ix

1. Introduction 1

2. Preliminaries 3
2.1. Modern Cryptography . 3

2.1.1. Encryption with One-Time Pads . 3
2.1.2. Encryption with AES . 4
2.1.3. Authentication with RSA . 4
2.1.4. Quantum Key Distribution with BBM92 . 5

2.2. Computer Networks . 9
2.2.1. Network Protocols and Layers . 9
2.2.2. Network Sockets . 9

3. Setup 11
3.1. Experimental Setup . 11
3.2. Analysis of Measurement Data . 14

3.2.1. Offset Calibration . 14
3.2.2. Sorting Timestamps into Time Bins . 15
3.2.3. Subsequent Analysis . 15

3.3. Inter-Process Communication . 16

4. Details on the Implementation 17
4.1. Modifications to the Previous Software . 17
4.2. Software Architecture . 18
4.3. Inter-Process Communication . 20

4.3.1. Communication between Alice, Bob, and the Source 20
4.3.2. Communication between Java and Python . 23

4.4. Timestamp Analysis . 24
4.5. Key Sifting . 25
4.6. Error Correction and Privacy Amplification . 28

5. Results 31
5.1. Inter-Process Communication . 31

5.1.1. Stopping the Memory Leak . 31
5.1.2. Security Considerations on Serialization . 33

5.2. Timestamp Analysis . 34
5.2.1. Detector Offsets . 34
5.2.2. Security Considerations on Time-Bin Sorting . 36

vii

5.3. Sifted and Secure Keys . 36

6. Summary and Outlook 41

A. Setting up the Quantum Network Control Center 43

B. Configuring the Quantum Network Control Center 45

C. Code Sections where Untrusted Data is Deserialized 47

List of Figures 49

Bibliography 51

viii

Glossary

AES Advanced Encryption Standard.

BBM92 QKD protocol published by C. Bennett, G. Brassard, and N. Mermin in 1992.

BER Bit Error Rate.

CBC Cipher Block Chaining.

CROSSING Research center at TU Darmstadt focussing on advances in cryptography.

DES Data Encryption Standard.

ECB Electronic Codebook.

FWM Four-Wave Mixing.

IP Internet Protocol.

IPv4 Version 4 of IP, using 32-bit addresses.

IV Initialization Vector.

LDPC Low-Density Parity-Check.

MITM Man-in-the-middle.

network socket Application programming interface for data exchange via the network.

One-Time Pad Encryption algorithm using XOR where keys must only be used once.

OSI Open Systems Interconnection.

QBER Quantum Bit Error Rate.

QKD Quantum Key Distribution.

QNCC Quantum Network Control Center.

RSA Encryption algorithm published by R. Rivest, A. Shamir, and L. Adleman in 1977.

SPDC Spontaneous Parametric Down-Conversion.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

XOR exclusive or.

ix

1. Introduction

Having been used by humans for millennia [1], cryptography has become one of the main building blocks of
today’s societies. Cryptography is omnipresent: from securing communications over authenticating digital
payments to storing data securely, processes of cryptography such as encryption and authentication are
constantly used throughout everyone’s daily life.

With the advent of usable quantum computers getting closer each day, the security of cryptography used
to date is at risk [2]. Algorithms designed to run on quantum computers, like Shor’s Algorithm [3], offer
polynomial-time solutions to problems that could previously only been solved in exponential time, like prime
factorization and discrete logarithms. Thus, they become a serious threat to break all asymmetric cryptography
popular today [4]. Research on so-called post-quantum cryptography [5] or quantum-resistant cryptography [6]
has become a huge field where mathematical problems are researched that serve as replacements for existing
trapdoor functions, i.e., functions that are easy to compute but hard to invert without the knowledge of a
secret [7].

An alternative to investigating mathematical problems regarding their security against attacks with quantum
computing power is making use of the laws of quantum mechanics not only to build quantum computers but
also to secure cryptography, a technique called quantum cryptography [8]. Most of this quantum cryptography
today is used to agree on a shared secret between two parties and is thereby called Quantum Key Distribution
(QKD). In QKD, measurements are done on quantum objects exchanged between two communicating parties,
in cryptography usually called Alice and Bob. Due to the laws of quantum mechanics, a secret key can be
obtained from the results of these measurements, because an attacker trying to eavesdrop this process would
disturb the quanta’s states, essentially introducing a high amount of errors in the parties’ keys that could
be easily detected. If QKD successfully yielded a secret key, it can be used with symmetric-cryptography
algorithms like the Advanced Encryption Standard (AES) or One-Time Pads to, e.g., encrypt and sign data.

At TU Darmstadt, research on QKD is done as part of CROSSING, a joint project between computer science
and physics, and more specifically as part of the project area P4 – Quantum Key Hubs. In contrast to existing
2-party QKD setups, the setup at TU Darmstadt enables scaling up to more than 100 communicating parties in
a star-shaped QKD network with demonstrated ranges of up to 100 km under real-world conditions using the
so-called BBM92 protocol, which uses entangled pairs of quanta to obtain a shared secret key. In collaboration
with E1 – Secure Integration of Cryptographic Algorithms and E3 – Secure Refinement of Cryptographic Algorithms
of CROSSING, the implementation of this QKD setup is analyzed on correct implementation of cryptographic
primitives and security against side-channel attacks, respectively.

Research on QKD at TU Darmstadt started many years ago with Oleg Nikiforov building the first working
QKD system at TU Darmstadt using BBM92, followed by Erik Fitzke and Maximilian Tippmann currently
working on extending this to multiple parties under real-world conditions [9]. Research on BBM92 with the
time-bin coding used in this setup is important because unlike polarization-based QKD protocols it works
even with large distances and harsh environments. The works of most interest for this thesis were done by
Lucas Bialowons in his Master’s thesis Completion of a 4-Party Time-bin Entanglement QKD System [10], by

1

Jendrik Seip in his Master’s thesis Error Correction and Key Post-Processing for Quantum Key Distribution [11],
and by Hühne, Schumann, Hernandez, Petri, and Dentler on the Quantum Network Control Center (QNCC)
program [12]. In these works, they built a QKD setup fully functional in a centralized version, implemented
an algorithm that allows to correct errors in the resulting keys, and developed a software that allows the
communication between all communicating parties, respectively.

Based on all this work, this Bachelor thesis focusses on implementing the protocols and algorithms of BBM92
for parties on separate devices, allowing them to generate secret keys based on the measurement data produced
by the QKD setup. This work gets the QKD system at P4 – Quantum Key Hubs a lot closer to a very first
real-world usage. The result of this thesis’ work is version 0.1.0 of QNCC that can be found in the GitLab group
of P4 – Quantum Key Hubs.

2

2. Preliminaries

Before describing the setup of this Bachelor thesis, details on the implementation of its software, and results,
let us shortly revise some fundamental concepts of modern cryptography and computer network technologies.

2.1. Modern Cryptography

While Caesar already used cryptography to try to make his letters confidential [1], this classical cryptography
was mostly about only this application of cryptography and did not receive formal verification of its secureness.
With the advent ofmodern cryptography, algorithms were invented that allowed other usages like authentication
and signatures. [13]

Many processes today require some type of cryptography. To ensure confidentiality when communicating
with lawyers or authorities, messages can be encrypted. When doing banking transactions via the Internet,
browsers use authentication to make sure that a website is run by some trusted organization and not by
attackers. Even with quantum computers breaking some of these cryptography algorithms used to date [2],
“classical” modern cryptography is still required. The most popular type of quantum cryptography, Quantum
Key Distribution (QKD), is about establishing a shared secret between two parties, but in order for it to be
useful, classical algorithms like One-Time Pads and Advanced Encryption Standard (AES) need to be used to,
e.g., encrypt data using this shared secret.

2.1.1. Encryption with One-Time Pads

One-Time Pad encryption is one of the simplest algorithms to encrypt data, yet it is the only one proven to be
information-theoretically secure [14]. This means that no matter how much time and computational resources
attackers invest, they will never be able to find the plain text belonging to a given cipher text.

Bits can be represented by elements of F2, the finite field with only two elements 0 and 1. To encrypt a bit
string p ∈ Fn

2 called plain text and consisting of n bits, n bits of random data are needed. They form the key
k ∈ Fn

2 and are allowed to be used as a key only once. With the addition on Fn
2 being defined element-wise in

table 2.1, the plain text p can be encrypted to a cipher text with c = p+ k. Since k + k = 0 for any k ∈ Fn
2 ,

decrypting c is done with c+ k = p. Especially in the context of cryptography, One-Time Pads are defined
using exclusive or (XOR) which is equal to additions on F2.

Using QKD in combination with One-Time Pads makes the whole process information-theoretically secure.
However, due to the requirement of k being of the same size as the plain text p and that k is allowed to be
used only once, in practice more sophisticated algorithms like AES are used that allow smaller key sizes and
the reuse of keys.

3

Table 2.1.: Definition of addition on F2 and XOR.
+ 0 1
0 0 1
1 1 0

2.1.2. Encryption with AES

As the successor specification to the now broken Data Encryption Standard (DES) [15], the Advanced
Encryption Standard (AES) is a symmetric block cipher first published by Joan Daemen and Vincent Rijmen in
1998 [16]. AES is a symmetric-key algorithm which means that it uses the same key to encrypt and decrypt
data. To establish this key between two communicating parties, QKD can be used. Being a block cipher, AES
does not encrypt and decrypt the whole plain text as a single piece, but instead divides it into blocks of a
certain size, usually 256 bits.

Ultimately, AES still uses XOR just like One-Time Pads to generate a cipher text from the plain text and the
key. However, three different algorithms are used during the process of encryption that allow AES to reuse
keys that are of smaller sizes. These algorithms are applied in sequential order for numerous times as part of
so-called rounds. For a block size of 256 bits, 14 rounds are used [16], i.e., on each 256-bit block of plain text
data the three algorithms and a slightly sophisticated One-Time Pad version are applied 14 times. In the last
round, however, only two of the three algorithms are applied.

When encrypting with AES, it is important not to simply divide a plain text into pieces of 256 bit and encrypt
each piece independently, as this is inherently insecure. Doing so would allow attackers to learn about the
structure of a plain text messages since equal plain text blocks get encrypted to equal cipher text blocks.
Instead, a different block cipher mode of operation needs to be used in place of this simple algorithm called the
Electronic Codebook (ECB) mode. One such secure algorithm is given by the Cipher Block Chaining (CBC)
mode. With CBC, the plain text of a block is XORed with the cipher text of the previous block before encrypting
it with AES. By this, it is ensured that equal plain text blocks do not result in equal cipher text blocks, since the
cipher text of one block now depends on all previous blocks. For the first block, an Initialization Vector (IV) is
used to XOR it with the first plain text block. This IV must be different for each encryption with AES that uses
the same key, since otherwise equal beginnings of plain text messages would result in equal beginnings of
cipher text messages. [7]

2.1.3. Authentication with RSA

Symmetric-key algorithms like AES presented in the previous section require parties that want to exchange
encrypted messages to establish a secret key that is only known to these parties. Instead of this, asymmetric-
key algorithms can be used that drop this requirement of having to exchange secret keys beforehand. With
asymmetric-key algorithms, every party has a public and a private key. The public key can be shared with
anyone and is used to encrypt a message for the party. To decrypt this message, the private key is needed
that is only known to the party. One example for such an algorithm of asymmetric cryptography is RSA [17].
Named after its founders Ron Rivest, Adi Shamir, and Leonard Adleman, RSA is based on the problem of
factoring a product of two large prime numbers. Following this idea, the public key in RSA is generated from
the product of two large prime numbers, while the private key is generated from the knowledge of these
prime numbers. It is safe to publish this public key, since no algorithm is known that factors the product of
prime numbers in polynomial time.

4

For RSA, the same mathematical operation is used to encrypt and decrypt a message. To encrypt a message,
the public key is used during this operation, while decrypting the message is done with the private key. By
interchanging the keys used during encryption and decryption, RSA can be used to sign messages. When Alice
wants to sign a message, first she uses a hash function to hash this message. A hash function is an irreversible
function that takes a message of arbitrary size and produces a message of fixed size. Alice encrypts the hash
result using her private key, not her public key, to obtain the signature. Bob verifies the message by decrypting
the signature with Alice’s public key and comparing the decrypted signature to his own hash result of the
message. If they match, the message was signed by Alice, since only she knows her private key.

While there are no known polynomial-time algorithms that break RSA on classical computers, RSA can be
broken by quantum computers using Shor’s algorithm [3]. Shor’s algorithm allows to factor the product of
prime numbers in polynomial time and thus break RSA. Until this happens, RSA may be used to authenticate a
QKD session by signing and verifying all messages exchanged, since authenticity only needs to be assured at the
time of running a QKD session. Man-in-the-middle (MITM) attacks — where an attacker pretends to be Alice
or Bob by breaking the authentication — cannot happen afterwards, in contrast to attacks on the confidentiality
that may get broken in any moment in the future. The latter would result in confidential data getting revealed.
Nevertheless, it is recommended to already start now using authentication algorithms that are not known to
be broken by quantum computers, such as the ones researched in post-quantum cryptography.

2.1.4. Quantum Key Distribution with BBM92

With quantum computers breaking mostly asymmetric cryptography, symmetric cryptography, like AES, can
still be used to, e.g., encrypt data. However, with the lack of secure asymmetric cryptography, some method
is needed to establish a shared secret key between two or more parties. One way of doing this is using the
Quantum Key Distribution (QKD) protocol BBM92.

First published by Charles H. Bennett, Gilles Brassard, and N. David Mermin in 1992 [18], BBM92 is a variant
of QKD protocols that is based on an idea first presented by Artur K. Ekert in 1991 [19]. Ekert noted that
nonlinear optical processes like Spontaneous Parametric Down-Conversion (SPDC) or Four-Wave Mixing
(FWM) could be used to create two entangled quanta that contain secret information to be obtained by Alice
and Bob during measurements. In crystals featuring either SPDC or FWM, there is a non-zero probability
that a single photon entering the crystal results in two photons leaving the crystal. These photons are called
entangled because they can only be described by a single wave function in quantum mechanics, not by two
independent ones, and thus measurements with them, even in distinct places, will yield identical results.

The BBM92 setup at P4 – Quantum Key Hubs uses imbalanced interferometers to encode secret information via
a so-called time-bin coding [20, 21] which makes use of the entanglement between photons leaving a crystal
featuring SPDC. Figure 2.1 shows a schematic setup containing three Mach-Zehnder interferometers: one
interferometer at the photon source and two interferometers on the receivers’ side, Alice and Bob, respectively.
The interferometers are imbalanced, i.e., the lengths of the two arms of a single interferometer are not equal.
By this, a single photon entering an interferometer and taking either the left or the right arm arrives at
different times at the interferometer’s output. This results in an arrival histogram as shown in figure 2.2.
There, photons taking the short paths in both the source’s and, e.g., Alice’s interferometers will be detected as
part of the left so-called satellite peak. Similarly, photons taking the long paths in both interferometers will
create the right satellite peak. In the central peak, photons are detected that either take the short path in the
source’s interferometer and the long path in Alice’s interferometer, or vice versa with the long path at the
source and the short path on Alice’s side. It is therefore that the central peak is roughly double the size of the
satellite peaks.

5

PLS Alice

Bob

DET

BS BS
α

β

φ PPP

Figure 2.1.: QKD setup showing the source and two receivers. The source, Alice, and Bob have identical
imbalanced interferometers with phase delays ϕ, α, and β, respectively. The photons leaving
the pulsed laser source (PLS) first hit a beam splitter (BS) where they take either the short or
the long path of the interferometer. Then they enter the photon-pair production (PPP) where two
entangled photons travel to the interferometers of Alice and Bob and each get detected by two
single-photon detectors (DET) at the interferometers’ outputs. [9]

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Arrival time in a.u.

Co
un

ts
in

a.
u.

early
central
late

Figure 2.2.: The simplified histogram shows the photon count as a function of their arrival time at the parties’
detectors. A major so-called central peak can be seen, surrounded by two minor early and late
satellite peaks.

6

Whenever a photon enters an interferometer, it has a 50% probability of taking either the long or the short
path. If a photon takes the short path in the source’s interferometer and gets split up into an entangled pair of
photons, they could take the short path in Alice’s interferometer and the long path in Bob’s interferometer.
Alice and Bob cannot extract secret information from such an event and will therefore discard it in the later
key sifting. However, if both photons take the short path in Alice’s and Bob’s interferometers, both Alice and
Bob will detect them as part of the early satellite peak. The same happens when the photons take the long
path in all interferometers — Alice and Bob will detect them as part of the late satellite peak.

The case left is when the photons take different paths in the source’s and receivers’ interferometers. Due to a
quantum effect called Franson interference [22], the probability for such photons to reach the same output at
both Alice’s and Bob’s interferometers depends on the phase delays ϕ, α, and β introduced in the source’s and
receivers’ interferometers (see fig. 2.1) [23]:

P (Ai, Bi) ∝ sin2
(︃
α+ β − ϕ

2

)︃
, (2.1)

where Ai is Alice’s detector and Bi is Bob’s detector at same outputs. If entangled photons always reach same
outputs in both interferometers, the probability for photons reaching different outputs is 0. Consequently, this
latter probability is given by

P (Ai, Bj) ∝ cos2
(︃
α+ β − ϕ

2

)︃
. (2.2)

Here, different indices i and j in Ai and Bj indicate that the photons reach detectors at different outputs. To
maximize the probability for photons to always reach different outputs when detected as part of the central
peak, the phase delays in the interferometers may add up to:

α+ β − ϕ = 2πn;n ∈ N . (2.3)

The interferometers are built in such a way that the phase delays add up to a value close to 2πn. Nevertheless,
the sum slightly deviates from 2πn since the interferometers cannot be constructed with perfect precision.
Therefore, the interferometers are heated to further adapt the phase delays with thermal expansion. The
quantity used to control the temperature is the correlation coefficient [10]

C =
Ncorr −Ncross-corr
Ncorr +Ncross-corr

= P (Ai, Bi)− P (Ai, Bj) . (2.4)

It consists of the two aforementioned probabilities P (Ai, Bi) and P (Ai, Bj), and the event counts Ncorr
and Ncross-corr where both Alice and Bob measure an event in the central peak at the same output of their
interferometers or at different outputs, respectively. By adjusting the temperature of one party’s interferometer,
a value close to C = −1 is achieved which means that events in the central peak are fully anti-correlated. For
counts in the central peak, bit values 0 and 1 are assigned depending on which detector clicked. Therefore,
a correlation coefficient of C = −1 is preferred over C = 1 because like this the ratio of 0 and 1 bits in the
sifted key does not depend on the relative detection rates of the detectors.

To derive a shared secret key from Alice’s and Bob’s measurements, each detected photon is matched to a state
of a certain basis. Two bases are defined containing in total four different states. One basis is the time basis,

7

containing the states short-short and long-long. These two states are orthogonal, i.e., they can be measured
simultaneously, and ultimately a quantum object measured in the time basis is either in the short-short state
or the long-long state. Alice and Bob assign values 0 and 1 to these states, which are used in the later key.

The other basis is the phase basis, containing the short-long and long-short states. Unlike in the time basis,
Alice and Bob cannot assign bit values depending on the peak they measured the photon in. Instead, when
measuring in this basis, they assign values 0 and 1 to these events depending on which detector clicked. Due
to a correlation coefficient of −1 and Franson interference, Alice’s left detector clicks when Bob’s right detector
clicks, and vice versa. Therefore, when measuring in the phase basis, Alice assigns 0 to the events measured
with her left detector and 1 to the events of her right detector, while Bob assigns opposite bit values 1 for his
left-detector events and 0 for his right-detector ones. The states from one basis are not orthogonal to the ones
from another basis, meaning that only one basis can be measured at a time.

A crucial point to understanding the security of QKD protocols lies in the no-cloning theorem in quantum
mechanics [24, 25, 26] and the usage of non-orthogonal states to obtain shared secret information. The
no-cloning theorem states that quantum objects cannot be cloned. From this it follows that an attacker, usually
named Eve, cannot intercept the quanta to create and forward a copy of them while obtaining the secret
information from her quantum copies. Due to using non-orthogonal states, an attacker can neither measure
the quanta, obtain information about their states, and then forward those quanta, since measuring a quantum
object inevitably results in disturbing its state.

When intercepting quanta, Eve has a 50% probability of making the measurement results of Alice or Bob
unpredictable by picking “the wrong” pair of states compared to the ones Alice or Bob are about to measure.
Let us assume Eve measures a quantum in a certain basis and then forwards it to Bob. Alice and Bob then
both happen to measure the quantum in the other basis. Even though the quanta were once entangled, Alice
and Bob will get uncorrelated results, because by having Eve measuring the quantum in a different basis
before Bob measures it, there is no longer a correlation between Alice’s and Bob’s results, but Bob’s result will
be random with a 50% probability each.

Key Sifting and Post-Processing

Once Alice and Bob matched each event to a certain basis and assigned bit values accordingly, they can
publicly announce in which basis they measured for each photon they detected. They only keep the values
where they measured in the same basis and discard all other values. This list of values is called the sifted key.
Theoretically, the sifted key is equal for both Alice and Bob, but due to various different reasons, like, e.g.,
imperfect setups or attackers, there are still some values that differ between Alice and Bob. This is fixed as
part of the post-processing.

When announcing their list of bases, the classical channel via, e.g., the Internet does not need to be encrypted.
However, it must be authenticated, i.e., Alice and Bob must be able to verify that a received message was sent
by their communication partner and not by an attacker Eve. If it were not authenticated, Eve could run an
Man-in-the-middle (MITM) attack where essentially Alice and Bob would each run their own BBM92 protocol
with Eve without noticing it. The quantum channel where entangled quanta are exchanged between Alice
and Bob is secured by the aforementioned laws of quantum mechanics, even against a malicious source, as
shown in reference [18], and therefore does not have any security requirements at all.

Analogously to the classical Bit Error Rate (BER), a Quantum Bit Error Rate (QBER) is introduced as a measure
of error occurrence. For the QKD setup at P4 – Quantum Key Hubs, QBER values around 2.5% are found for a

8

total fiber length of 76.9 km [9], meaning that around 2.5% of the sifted key’s bits are flipped between Alice
and Bob.

In his Master thesis [11], Jendrik Seip implemented an error correction algorithm based on Low-Density
Parity-Check (LDPC) codes in a Java program designed to correct errors during QKD sessions. Since error
correction algorithms need to expose information about the key to be corrected, the error-corrected key is
privacy-amplified, essentially by generating a shorter key that is more secure as the key with errors before error
correction. It got implemented in Java in order to allow E1 – Secure Integration of Cryptographic Algorithms to
analyze the implementation of QKD algorithms on correct implementation of cryptographic primitives. The
limit for being able to obtain a secure key is a maximum QBER value of 11.5%, as shown by Lütkenhaus in
ref. [27]. If the QBER value is higher than this, the post-processing code does no return a secret key. This
thesis makes use of Seip’s work to let Alice and Bob obtain an identical secret key.

2.2. Computer Networks

With the invention of theWorld Wide Web (WWW) by Tim Berners-Lee in 1989 [28], the Internet and computer
networks in general started to rapidly spread around the globe and even into space. Its underlying network
technologies, the Transmission Control Protocol (TCP) and the Internet Protocol (IP), however, were already
published as soon as 1974 [29].

2.2.1. Network Protocols and Layers

To let two computers in distinct places communicate with each other via the Internet, a set of different
technologies and algorithms is used that is split into four different layers in the TCP/IP model. These four
layers are derived from seven more general Open Systems Interconnection (OSI) layers. [30]

On the lowest layer, the Link Layer, the communication on the hardware-level between two neighbouring
computer systems is handled by using, e.g., lasers and fibers. On top of this, the Internet Layer handles
the routing of packets of data that is to be exchanged between two computers by using IP. With IPv4, each
computer is assigned a 32-bit IP address like, e.g., 130.83.47.181, that is used by IP to route packets from their
source to their destination system. On top of this Internet Layer, the Transport Layer assures that data sent
from the Application Layer is transported to its destination. Protocols like TCP do so by offering applications an
interface that allows them to send and receive continuous streams of data. In most programming languages,
these interfaces are implemented as so-called network sockets. In addition to the IPv4 address, Transport Layer
protocols like TCP allow to further specify a port number which is an unsigned 16-bit integer, allowing up to
65 535 processes to send and receive data. [30]

2.2.2. Network Sockets

To let one process on one computer communicate with another process on either the same or another computer,
network sockets are commonly used. They come in at least two different flavours: connection-oriented and
connectionless. For connectionless network sockets, most often the User Datagram Protocol (UDP) is used.
They allow to send packets of data without previously having to establish a connection on the Transport Layer.
However, packets may get lost during their transmission and also the order of the packets is not guaranteed.

9

As it is important for QKD to receive every single bit and process the bits in the correct order, connection-
oriented network sockets are used together with TCP. Two processes A and B that want to communicate with
each other start by letting one process, e.g., A, wait for incoming connections on a certain port. B then tries
to connect to A by indicating the IP address and port number of A. Once A has accepted this connection,
they can start exchanging data by simply writing bytes of data into an input stream and reading them from an
output stream. They do not have to worry about packaging this stream of data into packets, nor to resend
packets in case of losses nor to reorder packets when receiving them, since this is handled by TCP. Both
network sockets of A and B offer an input and an output stream.

10

3. Setup

Due to the work done by Lucas Bialowons et al. [9, 10], the QKD setup using BBM92 at P4 – Quantum Key Hubs
has been operational at the beginning of this thesis. Here, all measurement devices need to be connected to a
single computer on which all of the calculations and analyses are done inside a single program. While it sorts
detected photons into time bins and generates a sifted key from the knowledge of all detectors’ measurement
results, no secure key is derived but instead only estimations on key lengths are given. This setup and the
program that will be used to separate the receivers and source, the Quantum Network Control Center (QNCC),
are presented in this chapter.

3.1. Experimental Setup

The QKD setup is fully automated using a set of measurement and analysis scripts implemented in Python.
Python is used because it features useful libraries for communication with measurement devices and for
calculations with large amounts of data. The measurement scripts handle the initial configuration and startup
of all devices used as part of the source and receivers, while the analysis scripts use the measurement results
to obtain sifted keys and statistics like QBER values. In contrast to most existing QKD setups, the setup at
P4 – Quantum Key Hubs enables key distribution between more than two parties. As presented in ref. [9], dense
wavelength-division multiplexing is used together with a broad SPDC spectrum which enables connecting
more than 34 parties. In the current setup, besides Alice and Bob, there are two more parties called Charlie
and Diana that participate in the key generation process using the same photon-pair source. Currently, all
four parties can be freely connected pair-wise to form two subnets, but within these subnets the situation is
identical to a 2-party setup. That is why in this thesis the names Alice and Bob merely refer to roles, but not
to actual parties within a potential 34-party network.

Figure 3.1 shows the setup of the receiver of a party. Each receiver has in total two single-photon detectors,
one for each of the two outputs of the Michelson interferometer. By using Michelson interferometers with
Faraday mirrors instead of Mach-Zehnder interferometers, the receivers can be used for BBM92 time-bin
coding despite polarization changes in the fiber connecting two parties. To be able to detect photons on both
outputs of the interferometer, an optical circulator is used. This optical circulator transmits light into one
direction, but reflects light into a second output if entered from the other side. Due to losses of the optical
circulator, one detector detects more photons than the other. Every time a photon is detected, the event is
logged in form of a 64-bit timestamp using a time tagger1. The measurement results consist of two lists of
timestamps per party, whereas one list contains the timestamps of one detector. Since the clock speed of
Alice’s and Bob’s time tagger is not exactly equal, clock recovery from ref. [9] is used to correct the obtained
timestamps afterwards.

1ID900 Time Controller Series by ID Quantique

11

Circulator

Detectors

50:50 BS

FRM

50:50 BS

FRM

FRM
Time Tagger

Figure 3.1.: This setup scheme adapted from ref. [31] shows one receiver. Light entering from the left passes
through an optical circulator. Inside the temperature-controlled box in yellow the Michelson
interferometer is shown, consisting of a 50:50 beam splitter (BS), two arms of different lengths,
and two Faraday mirrors (FRM). One output of the interferometer leads to the right single-photon
detector, while light from the other output first passes through the optical circulator before hitting
the left detector. For all detections, timestamps get logged with the time tagger.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

0

1,000

2,000

Photon arrival time within repetition cycle in ps

Co
un

ts

Det. A
Det. B
Early
Central
Late

Figure 3.2.: The arrival histogram of data produced by the QKD setup in ref. [9] shows two interleaved
three-peak structures.

12

Measuring Measuring

Timestamp
Analysis Sifting QBER/C

Post
ProcessingCalibration

Figure 3.3.: This diagram shows the various steps during measurement and analysis. Starting with a first
measurement, an initial calibration is done. Timestamps from subsequent measurements are
recalibrated and sorted into time bins during timestamp analysis, a sifted key is obtained, the
QBER and correlation coefficient C are calculated, phases are adapted, if necessary, and the
sifted key is error-corrected and privacy-amplified during post-processing.

With clock recovery, knowing the clock periodicity allows the timestamp list of Alice and Bob to be separately
analyzed by each party on its own to retrieve the clock speed of the source and correct the timestamps
accordingly. Without clock recovery, the time taggers must be analyzed using an electrical connection.

While the source is continuously producing photon pairs, Alice and Bob each measure for periods of 90 s.
Afterwards, they immediately start a new 90-second measurement, but simultaneously analyze the obtained
timestamps and, e.g., use the calculated correlation coefficient C from eq. (2.4) to correct an interferometer’s
phase delay, if necessary. This means that the analysis of the measurement’s results must not take longer than
90 s, because otherwise another measurement iteration may be started with sub-optimal phase delays. The
imbalancement of the interferometer in this setup is 3.03ns [10]. To produce the three-peak structure shown
in figure 2.2, the pulsed laser source would need to produce photons with a pulse period of 3 · 3.03ns ≈ 9.1ns.
In this setup, however, the pulsed laser source is producing photons with a period of 1.5 ·3.03ns ≈ 4.55ns [10]
which leads to an interleaved peak structure as shown in figure 3.2. With this interleaved peak structure, the
space between a single structure’s peaks is used to fill in another peak structure, leading to a nesting level of 2.

An overview of the various steps necessary during measurement and analysis is given in figure 3.3. After
measuring for the first time for 90 s, an initial calibration is done in which offsets for Alice’s and Bob’s detectors
are obtained. After measuring again for the same period of time, the analysis is started by performing a
recalibration of the timestamps and sorting the timestamps into time bins for key sifting. The recalibration
is only necessary when analyzing timestamps without clock recovery, otherwise the tiny drifts are already
compensated by the clock recovery algorithms. Alice and Bob then do the key sifting and based on comparing
the sifted key between Alice and Bob, values for QBER and correlation coefficient C are obtained that are used
to confirm the security of the key exchange session and adapt the phase delays of the interferometers. The
sifted key is then post-processed by doing an error correction and privacy amplification. All this is described
in section 3.2. At this point, a new 90-second interval of measurements can be analyzed.

13

3.2. Analysis of Measurement Data

The first step of the analysis of a 90-second iteration is the timestamp analysis. As part of it, the offsets
between the parties’ detectors get calculated and each timestamp gets sorted into a time bin, if possible.

3.2.1. Offset Calibration

Alice and Bob measure single photons with their two detectors at their interferometers’ outputs. When starting
a measurement for a 90-second period, the time taggers of both parties start with their clocks at zero. However,
the fibers connecting the source with Alice and Bob are of different lengths which results in one party detecting
photons later than the other one. In addition to this, Alice and Bob never start their measurements at exactly
the same point in time, adding yet another offset between their timestamps. Finally, even between the two
detectors of a single party there is an offset due to different lengths from the interferometer exits to the
detectors. In the first iteration, an initial calibration is done in which offsets for all detectors are obtained
while choosing one of the parties’ detectors as the reference detector. In this thesis, this is Bob’s left detector
with its timestamp list B1. Alice calibrates her set of timestamp lists {A1, A2} by cross-correlating each list
with the timestamp list of Bob’s left detector. This is possible since both detectors of Alice detect photons that
are entangled with photons measured at Bob’s detector. This results in two offsets OA1,B1 = A1 − B1 and
OA2,B1 = A2 −B1 .

Bob cannot do this cross-correlation between his left and right detectors since the pairs of entangled photon
are split among Alice and Bob, i.e., there are no two entangled photons going both to a single party — besides
invalid events that happen due to imperfect wavelength-division multiplexing. Thus, the timestamp list of his
left detector is not correlated to the one of his right detector. Instead, he uses the timestamp list A1 of Alice’s
left detector to obtain the offset between his two detectors:

OB2,B1 = B2 −B1 = B2 −A1 +A1 −B1 = OB2,A1 −OB1,A1 . (3.5)

This means that in order to let Alice and Bob calibrate their detectors, they both need to know one of the
timestamp lists of the other party. The offsets obtained in this initial calibration are called relative offsets
and stored throughout the whole QKD session’s lifetime. Since Bob’s left detector is chosen as the reference
detector, its relative offset is always 0.

To allow sorting events into time bins, it is important to have the central peak exactly at the center of a
detector’s arrival histogram. This is handled by clock recovery. However, the software developed in this thesis
does not yet feature clock recovery, so recalibration is described as it is done without clock recovery. As a
first step towards obtaining the central peak offset of each detector, the central peak offset of the reference
detector is obtained as the reference offset using a peak finding tool2. When obtaining the central peak offsets
of the other detectors, the timestamps are first corrected by their relative offsets and the iteration’s current
reference offset. Then, the peak finding tool is used to obtain the final total offset of each detector. For the
reference detector, this is just the reference offset, but for all other detectors it is given by

Ot = Orel +Oref +Opeak , (3.6)

2scipy.signal.find_peaks

14

where Orel is the relative offset of a detector to the reference detector as obtained during cross-correlation in
the first iteration, Oref is the central peak offset of the reference detector in the current iteration, and Opeak is
the central peak offset of a single detector after correcting the timestamps by Orel and Oref . It is important
to recalibrate the detectors this way, because otherwise a timestamp list of one detector may get corrected
into a different direction than another, resulting in a drop of the sifted key rate. With the clock recovery
from ref. [9], these recalibration steps are no longer necessary and only the relative offsets from the initial
calibration are needed.

3.2.2. Sorting Timestamps into Time Bins

Once the timestamp lists are corrected by their respective offsets, the timestamps get sorted into time bins.
There are three time bins containing the early and late satellite peaks and the central peak. As stated in the
beginning of this chapter, the imbalancement of the interferometers is 3.03ns while using a repetition rate of
1.5 · 3.03ns ≈ 4.55ns to achieve pulse interleaving as described in ref. [10]. This results in two interleaved
three-peak structures as shown in figure 3.2. These two interleaved peak structures can be independently
analyzed by using a repetition cycle length of 2 ·1.5 ·3.03ns ≈ 9.1ns. In the first iteration, one of the three-peak
structures is analyzed by choosing time bins that surround peaks of only one the structures. To analyze the
other interleaved three-peak structure, the timestamps are shifted by 1/2 · 9.1ns = 4.55ns and analyzed using
the same algorithms and time bins as in the first analysis run.

In the scripts developed in ref. [10], time-bin sorting is implemented using the Python library numba3. Each
timestamp list contains up to 2 million timestamps, meaning that time-bin sorting cannot be implemented in
pure Python code since it would be too slow to finish before the 90-second limit. numba allows implementing
algorithms in Python code, but translates it to machine code before running it. Thereby, performances
comparable to native code in, e.g., C or C++ can be achieved. By combining the early-time-bin lists of both
detectors, all repetition cycles are obtained that correspond to measuring the short-short state in the time
basis. Similarly, the repetition cycles corresponding to the long-long states of the time basis are obtained by
combining the late-time-bin lists of both detectors. To gather the two states of the phase basis, the combination
of the central-time-bin lists of both detectors is used.

3.2.3. Subsequent Analysis

At this point, Alice and Bob possess the information about the measurement basis and the measured state
for all photons that could be matched to a time bin. As the analysis scripts work with a centralized setup,
all this information is available in a single place. By comparing the bases and states for Alice and Bob, the
analysis scripts calculate various statistics that are useful to estimate sifted and secure key rates. For example,
the amount of repetition cycles where they measured a photon in the same basis is equal to the length of the
sifted key. By comparing the measured states, the analysis scripts obtain the exact value for the QBER and use
this to estimate a secure key length. Since the setup has four parties connected to the source at the same time,
the analysis scripts do these analyses for both subnetworks consisting each of two connected parties.

3https://numba.pydata.org/

15

https://numba.pydata.org/

3.3. Inter-Process Communication

For the QKD setup to be useful, the source’s and receivers’ setups must be separated and split into distinct
units, connected only by an optical fiber and a classical network connection. The first step towards separating
the source and the four parties Alice, Bob, Charlie, and Diana was made by Hühne et al. in ref. [12] where
a program called Quantum Network Control Center (QNCC) was built. QNCC is responsible for building
connections between the parties and the source via the Internet or the local network, allowing them to
exchange messages during key generation, and saving secure keys obtained from QKD. QNCC features a
graphical user interface that allows storing several different contacts with their properties, like IP address,
port number, and public keys, and also allows exchanging files and chatting with those contacts end-to-end-
encrypted by using secure keys from QKD. Just like the post-processing software, QNCC got implemented
in Java to allow E1 – Secure Integration of Cryptographic Algorithms to analyze cryptographic algorithms on
correct implementation. In addition to that, having QNCC and the post-processing software implemented in
the same language allows easy integration of the latter into the key generation process of QNCC.

Since Alice and Bob normally are in distinct places when running QKD, some type of classical communication
channel is needed to exchange information like the list of bases between them. This channel is realized using
network sockets. Network sockets offer a stream-like interface that send and receive bytes without knowing
anything about the content or structure sent via this stream. Therefore, some kind of encoding is needed
that converts data in form of integers, strings, etc. to plain bytes and allows to decode these bytes back to
the original data. For the communication between Alice, Bob, and the source, this has been implemented in
ref. [12] using Java’s ObjectStream classes ObjectInputStream4 and ObjectOutputStream5. Each
network socket offers an input stream, where data from the other side is received, and an output stream,
where data is sent to the other side. These input and output streams of the network sockets are plugged into an
ObjectInputStream and an ObjectOutputStream, respectively. The ObjectOutputStream allows to
send primitive data like boolean or integer arrays, but also more complex objects, and handles the serialization
of this data to its byte representation. It makes sure that the corresponding ObjectInputStream on the
other side can rebuild the data from this stream of bytes.

The objects exchanged between the parties and the source are of the type NetworkPackage, a class
implemented in ref. [12] that stores, besides other metadata, the content of the message in form of a byte
array. It also stores a signature that allows, e.g., Bob to confirm a message’s authenticity he received from
Alice. This is important for QKD, since otherwise Alice and Bob could suffer from an MITM attack.

By default, ObjectInputStream and ObjectOutputStream remember all objects sent via these streams.
This is done to update objects on the receiver side that have already been received previously. For QNCC,
however, this is not necessary since sent messages are independent from each other, so it is essentially just a
log of all messages ever sent.

At the beginning of this thesis, QNCC was a program written purely in Java that was designed to work together
with eventual Python code by communicating via files written to and read from a local folder. QNCC would
wait for a file named out.txt written by the Python code. This file was read by QNCC and sent to the other
party’s QNCC where the content would be written to a filed named in.txt. Thereby, the other party’s Python
code was able to receive data. To prevent reading partial files, two files out.txt.lock and in.txt.lock were used
as an indication that a file was still being written to.

4https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectInputStream.html
5https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectOutputStream.html

16

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectInputStream.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectOutputStream.html

4. Details on the Implementation

As stated in the introduction, this thesis is concerned with separating Alice, Bob, and the source to allow
them to run a QKD session using the BBM92 protocol based on measurement data from the centralized
setup. The measurement and analysis scripts developed in ref. [10] only work in a centralized setup, where
all measurement devices are connected to a single computer. Also, they do not do the post-processing
required to obtain secret keys, but just estimate secure key rates by using the full knowledge about all parties’
measurement results. As part of this thesis, all analysis steps required by the BBM92 protocol are implemented
in a decentralized manner so that Alice and Bob no longer need to be in the same place. To distinguish this
new implementation from the already existing scripts, the latter are referred to as the legacy measurement
and analysis scripts.

4.1. Modifications to the Previous Software

In this thesis, the Quantum Network Control Center (QNCC) is modified and extended to match the project’s
needs when managing the key generation process and handling the communication between Alice and Bob.
In particular, the newly developed Python code of QNCC is responsible for receiving lists of timestamps from
the legacy measurement scripts. It uses them to obtain a sifted key, which is then handed over to the Java
side of QNCC where the code from ref. [11] does the post-processing. Finally, once the secret key is obtained,
it is saved to the key storage of QNCC and the correlation coefficient C — that is obtained from the sifted
key — is sent to the Python code. In the future, this value of C can be used to adapt the interferometers’
temperatures, if necessary.

When the development of QNCC started in ref. [12], a user interface for the command line was written.
In parallel, a graphical user interface was established that quickly superseded the command-line interface.
As a first step of cleaning up the code basis, the code belonging to the command-line interface is removed.
Nevertheless, the code is still accessible in the project’s version history1, if in the future there is interest for
a command-line interface. One of the first bugs encountered in QNCC is that the Python script started by
Java is not terminated when QNCC is closed. This is fixed by stopping the Process2 that runs the Python
script from Java when the Java program itself is stopped. Running multiple instances of QNCC for Alice, Bob,
and the source is difficult since configuration files are created in the same directory where the program is
executed. This is improved by storing all user data in a separate directory, allowing several instances of QNCC
to be started at the same time.

Inspecting the classes of QNCC that implement encryption with AES3 reveals that the CBC mode of operation
is used together with a hard-coded Initialization Vector (IV). The IV must be different for every encryption
1Merge request 3 in the GitLab project removed the command-line code, from where it can be easily recovered.
2https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html
3AES256 in the package encryptionDecryption

17

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html

when using the same key [7], since otherwise plain texts with equal beginning would result in identical cipher
text beginning. In QNCC, however, a key is never reused when encrypting with AES because QKD offers a
continuous stream of secure bits that get used as secret keys. Therefore, it is fine to use the same IV for every
encryption.

Finally, one bug that becomes apparent only after running QNCC over several iterations of measurement data
is that the memory usage of QNCC increases in time. This is due to QNCC remembering every single packet
ever sent between Alice and Bob. The problem and its solution are discussed in detail in section 5.1.1. QNCC
now forgets data immediately after sending it, thus making memory usage constant in time.

4.2. Software Architecture

With QNCC having many different responsibilities that are already partly implemented in Python and Java
code, it is important to design a clean software architecture for the Python code developed in this thesis that
allows for easy maintenance and that is modular so that new features can be easily integrated in the future.
In particular, this thesis focusses on working with data sets from historical measurements done in recent years.
In the future, however, QNCC will also be responsible for controlling the experimental setups of the parties
and the source. Therefore, a historical key generation mode is implemented in this thesis, while the default
key generation mode that also controls the measurement devices will eventually be implemented by future
students. While working on this historical key generation mode, the implementation of the BBM92 logic is
done in a way as modular as possible to allow most parts to be reused in the future default key generation
mode.

To achieve this modularity, a set of so-called abstract classes is used in the Python code4. They often have two
concrete classes inheriting from these abstract classes. The abstract classes are called abstract because they
cannot be used directly. Instead, a class needs to inherit from this abstract class by implementing all abstract
methods defined in the abstract class and by providing attributes of concrete type for attributes with abstract
types. These classes are then called concrete because they can be directly used to create objects. An example
is shown in figure 4.1. There, the abstract class for the task of key generation is AbstractKeyGeneration.
It has two methods besides the constructor function __init__() and a set of five attributes: measuring,
timestamp_analysis, sifting, post_processing, and phase_adjustments. The five attributes
have the type of their respective abstract classes and point to the implementations of the various different
steps of a QKD session.

Note that the methods start() and evaluate_iteration() are not abstract. The logic of these methods
is already implemented in AbstractKeyGeneration. Thus, when calling, e.g., evaluate_iteration()
on objects of the type HistoricalKeyGeneration, the method of the class that HistoricalKeyGen-
eration inherits from, AbstractKeyGeneration, is called. By this, all that is needed in the classes
KeyGeneration and HistoricalKeyGeneration is the initialization of the five attributes which hap-
pens in their __init__() function. Nevertheless, if there is the need in the future, both methods can be
overwritten in the concrete classes to provide their own implementation.

Similar to AbstractKeyGeneration, all steps of QNCC are managed using a set of abstract classes. For
some of them, like AbstractTimestampAnalysis, AbstractSifting, and AbstractPostProcess-
ing, there currently only exists a single class inheriting from these classes, which could make the abstract
classes look like unnecessary overhead. Nevertheless, it is useful to have the structure of these classes —
4Abstract classes are implemented in Python in the abc library: https://docs.python.org/3/library/abc.html

18

https://docs.python.org/3/library/abc.html

AbstractKeyGeneration

measuring : AbstractMeasuring
timestamp_analysis : AbstractTimestampAnalysis
sifting : AbstractSifting
post_processing : AbstractPostProcessing
phase_adjustments : AbstractPhaseAdjustments

__init__()
start()
evaluate_iteration()

KeyGeneration

measuring : Measuring
timestamp_analysis : TimestampAnalysis
sifting : Sifting
post_processing : PostProcessing
phase_adjustments : PhaseAdjustments

__init__()

HistoricalKeyGeneration

measuring : HistoricalMeasuring
timestamp_analysis : TimestampAnalysis
sifting : Sifting
post_processing : PostProcessing
phase_adjustments : SimulatedPhaseAdjustments

__init__()

Figure 4.1.: This class diagram shows the entry point into the Python code of QNCC. Depending on the
configuration, QNCC either starts KeyGeneration or HistoricalKeyGeneration.

usually called interface in software engineering — decoupled from their implementations, as it, e.g., allows
to easily add different implementations in the future. For example, when implementing clock recovery in
TimestampAnalysis, there might be interest in keeping the current implementation without clock recovery.
This could be achieved by renaming the current TimestampAnalysis class to something like Synchro-
nizedTimestampAnalysis — because the time taggers are synchronized using an electrical connection
— and implementing clock recovery in a new TimestampAnalysis class. Similarly, post-processing could
be implemented using a different error correction algorithm in another class inheriting from Abstract-
PostProcessing, or a third key generation mode OmniscientKeyGeneration could be introduced
that always exchanges all timestamps and other information between Alice, Bob, and the source to produce
similar statistics like the legacy analysis scripts do. This OmniscientKeyGeneration could then be used
during research and development on the physics of the QKD setup, since switching between QNCC and the
legacy measurement and analysis scripts is cumbersome due to having to change all measurement devices’
connections from the separate-computers setup back to the legacy single-computer setup. Thanks to a common
interface declared in the abstract class, all classes inheriting from an abstract class can be easily exchanged
with each other without the need to change other code.

Utilizing abstract classes everywhere also allows for easier automated testing of code. When testing, e.g.,
HistoricalKeyGeneration, it is important to only test the code of this particular class and not of other
classes called by HistoricalKeyGeneration. In software engineering, this is usually done by mocking
these dependencies, i.e., creating special implementations of, e.g., AbstractPostProcessing that are
designed just for these testing purposes. This hypothetical MockedPostProcessing class would not run
the real post-processing logic. Instead, it would offer methods of AbstractPostProcessing that return
reasonable values, in this case a correlation coefficient C, without requiring the post-processing code and

19

without doing any post-processing at all.

When a key generation is started in Python by calling the method start(), a connection is created to the Java
side of QNCC via a network socket on the local device and the measurement is started. The former is described
in section 4.3.2. The latter is currently only implemented in HistoricalMeasuring where measurement
data from the recent years is analyzed. These measurements were made with the legacy measurement
scripts and their data consists of two timestamp lists per party and iteration. HistoricalMeasuring
allows to dynamically read this data from any measurement set recorded in the past and hand it over to
HistoricalKeyGeneration where it is analyzed iteration-wise with evaluate_iteration().

4.3. Inter-Process Communication

Alice, Bob, and the source are in distinct places when running the QKD session and therefore require some
sort of communication channel. For this, the software developed in ref. [12] is used, QNCC. As the software
implementing the BBM92 protocol is developed in Python to eventually work together with the legacy
measurement scripts, another communication channel is needed that connects Java with Python. Both
communication channels are described in this section.

4.3.1. Communication between Alice, Bob, and the Source

All communication that happens between Alice, Bob, and the source from beginning a QKD session to obtaining
the secure key is shown in figures 4.2 and 4.3. It starts with Alice requesting a QKD session from Bob. Once
Bob accepts this QKD session, Alice requests from the source a QKD session with Alice and Bob. In the
current implementation with historical data, the source simply accepts this QKD session, but in the future
key generation implementation the source may start sending entangled photon pairs to Alice and Bob at
this point. Once the source informed Alice that it is now sending entangled photon pairs to Alice and Bob,
Alice can inform Bob in the future implementation that both may start with their measurement. This gets
acknowledged by Bob.

Alice and Bob now both measure incoming photons on their fibers with their BBM92 receiver setups from
figure 3.1 for a period of 90 s and store the timestamps of the detected photons in two lists, one for each
detector. To calibrate their timestamp lists, Alice and Bob each send to the other party one list of timestamps.
They use this to obtain an initial offset between their detectors’ timestamp lists. This initial calibration is
described in section 3.2.1.

At this point, Alice and Bob discard the timestamps and do not use them for a further key generation, since
they disclosed the timestamps’ content by sending them via a public channel to their communication partner.
Having obtained the offsets between their detectors, they can analyze the results of the next 90-second
measurement to obtain a secret key. When QNCC eventually controls the measurement devices in the future,
Alice and Bob start a new 90-second measurement immediately after finishing the previous one. In this thesis,
only the key generation with historical data is implemented, so Alice and Bob simply analyze one iteration
after another. They recalibrate their timestamp lists as described in section 3.2.1 and start with the key sifting
process described in section 4.5. Essentially, Alice and Bob send each other the list of bases they measured in
for each photon they detected and eliminate all timestamps where they measured in a different basis than
their communication partner.

20

Figure 4.2.: The sequence diagram shows the information exchanged between Alice, Bob, and the source
in the first iteration. The box denoted by par means that the steps surrounded by it happen in
parallel. The diagram is discussed in section 4.3.1.

21

Figure 4.3.: The sequence diagram shows the information exchanged between Alice, Bob, and the source
in subsequent iterations after the first one. The box denoted by loop indicates that the steps
surrounded by it are executed various times. The other box denoted by par means that the steps
are executed in parallel. The diagram is discussed in section 4.3.1.

22

After obtaining the sifted key through this procedure, Alice and Bob start with the post-processing described
in section 4.6. During this post-processing, Alice and Bob exchange three messages in total. The first two
messages are about exchanging a subset of sifted key bits that allow Alice to generate a third message. With
this third message, Bob can correct his key to be equal to Alice’s key using an LDPC code algorithm from ref.
[11]. As part of this post-processing, Alice estimates values for the QBER and correlation coefficient C that
she can use to adapt the temperature and thus the phase delay of her interferometer, if necessary. At this
point it becomes apparent that an analysis of each iteration may only take 90 s at maximum, since otherwise a
new iteration might get started with suboptimal phase synchronization. At the end of this post-processing,
Alice and Bob obtain an equal secret key and are ready for analyzing the next iteration.

4.3.2. Communication between Java and Python

The approach presented in section 3.3 of an inter-process communication between Java and Python using the
file system has several weaknesses and limitations. For example, communicating this way is slow because data
has to leave the memory and get written to the solid-state drive (SSD) or hard-disk drive (HDD). Additionally,
it is inherently insecure since other programs on a computer usually are allowed to read and write files in any
of the user’s directories. Finally, communicating this way allows only one message to be sent at a time since
QNCC does not implement queues where messages would wait until a previous message has been read. In the
first versions of this thesis’ code, this resulted in race conditions where Alice would send two messages before
Bob was able to read the first message. Thus, he missed the content of the first message and the QKD session
failed at this point. To prevent such race conditions, the code in this thesis waited for 10 s after sending a
message before sending the next one. This made the key generation process unnecessary slow.

To overcome these drawbacks, communication channels between two processes on a single computer can be
implemented using network sockets as well. Due to their stream-like nature, several messages can be sent in
a row while the underlying transport protocol ensures that all messages are received and read in the correct
order. By this, no queue has to be implemented in QNCC, all messages can be sent directly one after another,
and the key generation process becomes much faster. Like the communication between Alice, Bob, and the
source that is handled by the Java code from ref. [12], some kind of protocol is needed that encodes and
decodes information into byte form. ObjectStream cannot be used for this because it is only implemented
in Java, and reimplementing it in Python would be too much of an effort. So-called websockets are built on
top of network sockets and allow sending information in packets with metadata in form of headers, but they
require an HTTP server and thus are not used either due to their overhead. Instead, a simple protocol is
defined that allows to encode and decode information with the sockets’ streams.

In this protocol, whenever data is sent in its byte representation, it is prefixed by a header consisting of
8 byte. The first 4 byte represent the size of the message’s content. The subsequent 2 byte are interpreted as
an enumeration of the message type, followed by the final 2 byte of the header that specify the nesting branch.
The latter is useful to distinguish between the two list of bases sent with a nesting level of 2. All information
in the header is encoded as unsigned integers with big-endian byte order.

Following this 8-byte header, the message’s content is sent via the stream. By reading the header from the
stream first, the receiver knows how much data to request from the stream to obtain the complete message.
As part of this thesis, this protocol has been implemented in Python5 and Java6 together with a set of functions
in the class JavaCommunicator in Python that allow to send integers, floats, and arrays containing integers.
5see the classes JavaMessage and MessageType in the module networking
6see the classes PythonMessage and MessageType in the package keyGeneration

23

Java most of the time does not interpret the messages’ content, but handles them based on the message type.
For example, all messages sent during key sifting are simply forwarded to the other party. Only when receiving
the sifted key and sending the correlation coefficient C, Java works with the content of these messages.

Security Considerations on Java-Python Communication

Processes of users without root or administrator permissions usually are not able to access other processes’
memory content. Connecting two processes via network sockets like shown in the previous section opens
up potential attack vectors that need to be carefully considered. An attacker could try to get information
about secret keys by starting an MITM attack between the Java and the Python process, or simply block
key generation by doing a denial-of-service attack against one party. This is prevented by deploying various
security measures.

When the Python process is started by Java, a random port number and an authentication token consisting of
a random 32-bit integer are passed to Python. Both values get generated when starting a new key generation.
Python is required to send this authentication token as the first message when opening the network socket to
Java, otherwise Java refuses and closes the connection. Python is configured to only connect to IP addresses
on the same device (localhost), while Java also only allows incoming connections from the same device. After
receiving one connection, no new connections are allowed by Java. This ensures that only the Python process
started by Java connects to QNCC.

4.4. Timestamp Analysis

Like in the legacy implementation, the first step of a QKD session is the analysis of the timestamps, in particular
the offset calibration and recalibration, and the time-bin sorting. For the offset calibration where the initial
relative offsets get calculated, the code from the legacy analysis scripts gets reused that implements the
cross-correlation using the Python library numba. The offset recalibration also uses the code from the legacy
scripts, where a peak finding tool is used to center the peak structures of all detectors. The time-bin sorting,
however, is implemented from scratch because the code in the legacy scripts only works with all detectors
connected to a single computer.

When sorting timestamps into time bins, it is important not to implement too much of the logic in plain
Python code, since Python code is significantly slower than native implementations in, e.g., C or Fortran.
It is therefore that the software developed in this thesis uses the libraries numpy7 and sortednp8 that allow
fast calculations on large arrays containing the timestamps in form of 64-bit integers. Each timestamp list
contains up to two million entries and iterating over them with Python for loops is not possible within the
90-second-analysis limit of an iteration.

The timestamps given to the algorithm presented below must have the same clock speed as the timestamps of
the other party — either by using an electrical synchronization between the parties’ time taggers or by using
clock recovery — and the timestamps must already be corrected by their respective offsets. Depending on the
nesting level, the algorithm is run various times on each timestamp list. In this thesis, it is run twice, but
the algorithm supports arbitrary nesting levels. First it analyzes one three-peak structure and then shifts all
timestamps by the nesting offset of 4.55ns to analyze the other interleaved three-peak structure. For a single
7https://numpy.org/
8https://pypi.org/project/sortednp/

24

https://numpy.org/
https://pypi.org/project/sortednp/

party with one analyzed detector and three-peak structure, this results in three lists containing repetition
cycle numbers for each time bin. The repetition cycle numbers are the quotient of a modulo operation on the
timestamps with the repetition cycle time of 9100 ps and are equal for events of Alice and Bob with entangled
photons.

The first calculation done on the timestamps is the modulo operation while keeping the quotient and remainder
of each timestamp:

rep_numbers , remainders = np . divmod(timestamps , rep_time)

Here, np is the numpy library, timestamps is the array containing the timestamps of one detector in ps,
rep_time is the repetition cycle time, rep_numbers is the resulting repetition cycle number for each
timestamp, and remainders is the arrival time of each measured photon within a repetition cycle.

Next, we want to classify the remainders according to whether the photons arrived in the early, central, or
late time bin. For the early time bin, this is done with

(remainders >= 1020) & (remainders < 2020)

Here, 1020 and 2020 represent the lower and upper boundaries of the early time bin in ps. For the central
time bin, the boundaries are 4050 ps and 5050 ps, while for the late time bin they are given by 7080 ps and
8080 ps. These values are empirically found to work with the fiber lengths and setup configuration used in
ref. [10], but can be freely adapted by changing the configuration of QNCC as described in appendix B.

By comparing all remainders in the array remainders with these lower and upper boundaries of the early
time bin, a boolean array of the same size as the remainders array is obtained that contains values True for
all timestamps that got sorted into the early time bin, and False for all other timestamps. This information
is used to filter the array containing the repetition cycle numbers. Ultimately, this leads to three arrays
containing repetition cycle numbers that got matched to the early, central, and late time bin. By running the
same algorithm on the timestamp list of the second detector, another three arrays are obtained. To analyze
the other nesting branch, the timestamps are shifted by the nesting offset to obtain yet another six arrays for
the two detectors.

These two times six arrays are now processed for the latter key sifting. Like in the time-bin sorting presented
above, the data from the two nesting branches can be processed independently. In the key sifting, the necessary
information is the state of each measured photon. By combining the two arrays containing the early-time-bin
events of the left and right detector of one nesting branch, an array is obtained containing all repetition cycle
numbers where the short-short state got measured. Similarly, this is done for the late-time-bin events to obtain
an array with all long-long-state measurements. The central-time-bin events of the left and right detector
contain the short-long and long-short states of the phase basis. Analyzing both nesting branches results in
2 · 4 = 8 arrays.

4.5. Key Sifting

Now that Alice and Bob sorted their timestamps into time bins and thus determined the states of these events,
they can start deriving a sifted key from this information. By announcing to each other the basis for each
photon they measured, Alice and Bob can sift, i.e., filter, their four arrays of each nesting branch containing
the repetition cycle numbers per state. Due to the 50/50 beam splitter in their interferometers, Alice and Bob
discard approximately 50% of their timestamps where they measured in a different basis. For the remaining

25

50% of the events, Alice and Bob measured in the same basis, and the entanglement of the photons ensures
that they measured the same state. Again, this is only true for perfect setups and without attackers. When
running the key sifting algorithm on the data used in this thesis, in around 2.5% of the events Alice and Bob
measure different states even though they measure in the same basis. It is therefore that their sifted key is not
100% equal, which will be corrected during the post-processing described in section 4.6. Like the timestamp
analysis, the key sifting algorithm is implemented using the libraries numpy and sortednp for performance
reasons, and does not need numba as the legacy scripts do.

When announcing their list of bases, Alice and Bob must not reveal any information about the states. Still, this
information must be preserved to eventually obtain the sifted key. To gather the information about the time
basis, the two arrays containing the repetition cycle numbers of the early and late time bin are merged using
the function merge of sortednp. When doing so, the information about the states gets lost, i.e., whether the
photon was detected in the early or late time bin, so it is safe to publicly exchange this array between Alice
and Bob. To gather the information about the phase basis, the two remaining arrays are merged that contain
the timestamps of the left and right detector that got sorted into the central time bin. Again, the information
about the states gets lost, which is the detector that clicked, i.e., that detected a photon. Thus, it is safe to
also exchange this array between Alice and Bob.

Alice and Bob each send these two arrays containing the repetition cycle numbers of the time and phase basis
to the other party. They use these two arrays together with the function intersect of sortednp to obtain all
repetition cycle numbers where they measured in the same bases. When using the function intersect, the
parameter indices=True is passed that returns for each element of the resulting array the indices in the
two original arrays that got intersected. This is useful to create a sifted key containing only bit values 0 and 1
based on the array containing all repetition cycle numbers where Alice and Bob measured in the same bases.

When assigning bit values to the sifted key, it is important to respect the correlation coefficient C close to
−1, leading to anti-correlation in the phase basis for Alice and Bob. Thus, whenever Alice and Bob detect
entangled photons in the phase basis, Alice’s left detector clicks when Bob’s right detector clicks and vice versa.
Alice and Bob therefore assign opposite bit values to their detectors for phase-basis events in the sifted key. For
time-basis events, they assign the same bit values. As computers work with complete bytes instead of single
bits, up to seven bits are discarded to truncate the sifted key to a multiple of 8 bit. This makes processing
the sifted key easier, but if there is interest in keeping those seven bits, padding could be used where the
remaining bits are filled with 0 before sending the sifted key to the next processing step. Obviously, these
padded bits must be removed before using the sifted key to, e.g., derive a secret key.

Assigning bit values like this for the sifted key, the information about the basis is lost, i.e., for a single bit in the
sifted key it is not clear whether this bit was measured in the time or phase basis. For the latter calculation of
the correlation coefficient C, however, it is necessary to remember the basis of each sifted key bit. Therefore,
as part of this key sifting another bit string is created that is of the same length as the sifted key. In contrast to
the sifted key, Alice and Bob don’t put bit values based on the measured state into this string but 0 whenever
they measured in the time basis and 1 when measuring in the phase basis. Like the sifted key, this bit string is
also truncated to a multiple of 8 bit. Both bit strings containing the sifted key and its corresponding bases are
now ready to be passed to the post-processing.

Comparing Protocol Bandwidths

Two potential data protocols have been considered for this thesis for exchanging the list of bases after each
measurement interval of Tt = 90 s . Each protocol is discussed with the estimated data volume required for

26

sending the list of bases. This means that the total required data volume is two times the volumes presented
below, since each party sends and receives a list of bases.

Given the source produces entangled photons at a rate of fS = 215MHz [10], each cycle has a total length of
Tc = 4.65ns . This leads to a total amount of N = 19.35 × 109 cycles which can be encoded in B = 35 bit .
Encoding the cycle in B bits allows cycle lengths as low as Tc, min = Tt/2

B = 2.62ns or repetition rates of up
to fS, max = 381.77MHz . Each party has two detectors which detect around 20× 103 to fd = 30× 103 photons
per second and detector [10].

The first potential data protocol consists of sending two bits for each cycle, regardless of whether a photon
got detected or not. The first bit indicates whether a valid photon got measured; the second bit indicates its
corresponding base. Over a measurement period of Tt = 90 s , this leads to a total data volume of

V1 = 2 bit ·N = 38.70 gigabit = 4.84 gigabyte . (4.7)

The second protocol includes sending the full repetition cycle number encoded in B bits for every photon
measured by the two detectors. The repetition cycle numbers are sent in two batches, where the first batch
contains all cycles with photons measured in the phase basis and the second batch all photons measured in
the time basis. This results in a data volume of

V2 = 2 ·B · fd · Tt = 0.19 gigabit = 23.63megabyte . (4.8)

The required photon detection rate fd, eq for equal data volumes V1 = V2 is

fd, eq =
N

B · Tt
= 6.14MHz ≈ 205× fd ≈ 0.03× fs . (4.9)

Therefore, to have equal data volumes for both protocols, either the detection rate is increased by a factor of
205 or the losses are lowered to 15dB so that in at least 3% of the repetition cycles a photon is detected at
the receivers. From these calculations, it becomes apparent that the second protocol is preferable over the
first one in terms of required bandwidth. In this thesis, the second protocol has been implemented. However,
instead of encoding the repetition cycle numbers in 35 bit, they are encoded in 64 bit since the underlying
library used for calculations on the timestamps, numpy, does not support encoding integers in arbitrary bit
lengths. This results in a data volume of

V3 = 2 · 64 bit · fd · Tt = 0.35 gigabit = 43.20megabyte , (4.10)

which is an increase of 83% or 20megabyte compared to V2. If in the future there is interest to save this data
volume, data compression algorithms like gzip can be used or numbers can be manually compressed to and
decompressed from 35 bit when sending and receiving this data. Implementing the algorithms presented above
with self-built integer types of 35 bit is not recommended since most likely this would make the algorithms
much slower. In this project, performance is more important than saving bandwidth due to the 90-second
analysis limit of each iteration.

27

4.6. Error Correction and Privacy Amplification

The sifted key derived from the measurement data in the previous section is not equal for Alice and Bob,
but differs with a Quantum Bit Error Rate (QBER) of 2.5% for the data analyzed in this thesis. To correct
these errors, the sifted key is sent from Python — where the sifted key is generated — to Java using the
socket connection presented in section 4.3.2. There, the sifted key is handed over to the post-processing code
developed in ref. [11] that uses the Low-Density Parity-Check (LDPC) code algorithm to error-correct the key.

For the error-correction algorithm, an important size is the number of parity bits

M = f ·K ·H(QBER) , (4.11)

which is derived in ref. [11] using the desired LDPC efficiency f , the sifted key size K, and the Shannon
entropy

H(QBER) = −QBER · log2(QBER)− (1− QBER) · log2(1− QBER) , (4.12)

which is also derived as function of the QBER in ref. [11]. Using the LDPC code algorithm, Alice sends M
parity bits to Bob that allow him to correct his key so that it matches Alice’s key. It is important for Alice to
send enough parity bits, because otherwise Bob might not be able to error-correct his key. Therefore, it is
important to have a precise value of the QBER. In this thesis, the value for the QBER is estimated by

QBER =
e

n
, (4.13)

where e is the amount of flipped bits in the sifted key and n is the length of the sifted key. Alice and Bob do
not know the exact value of the QBER for their sifted keys, since they only compare a subset of the sifted key.
Thus, the QBER used for the error-correction is corrected by its uncertainty

∆QBER =
∆e

n
=

2
√
e

n
, (4.14)

which was derived using Gaussian propagation of uncertainty with∆e = 2
√
e as the uncertainty of the amount

of flipped bits. This leads to a number of parity bits

M = f ·K ·H(QBER+∆QBER) . (4.15)

During the post-processing, Alice and Bob exchange three messages related to the LDPC code algorithm that
are encoded as strings. In the first message, Alice asks Bob to send her a subset of his sifted key at randomly
chosen indices. In the second message, Bob answers with revealing these sifted key bits. Alice uses this
information to generate the LDPC code matrices and sends them to Bob, which allows him to correct his sifted
key so that it matches Alice’s one. After having exchanged this third post-processing message, both Alice
and Bob use privacy amplification to obtain a secret key that is more secure than the sifted key before error
correction. When Bob finishes his post-processing and successfully obtains a secret key, he informs Alice about
this so that both save this secret key to their key database. In case Bob fails to obtain a secret key, both Alice
and Bob discard this iteration.

28

There are two reasons why post-processing could fail: either the amount of parity bits sent from Alice to
Bob was not enough for Bob to error-correct his key, or the amount of parity bits was too high and too much
information was shared. The latter situation is equal to a QBER higher than 11.5%, which is the limit for
generating a secure key [27]. To summarize, it is crucial to send the right amount of parity bits that is neither
too high nor too low.

During the post-processing, not only the QBER but also the correlation coefficient C is estimated based on the
exchanged subset of the sifted key. Analogously to the calculation of the QBER, a value for C is calculated by
comparing each bit of the subset of the sifted key. In contrast to the calculation of the QBER, bits originating
from the time basis are ignored. At the end of the post-processing, the obtained value for C is sent back to the
Python code where it can be used to adapt the interferometers’ temperatures.

29

5. Results

With the software implemented in this thesis, it is possible to run a QKD session using the BBM92 protocol
based on measurement data recorded by previous setups. Before discussing the obtained detector offsets and
key rates in sections 5.2 and 5.3, respectively, the results of the inter-process communication are discussed in
section 5.1. For these results, two different sets of measurement data are used that got captured in October
2021 by the setup from ref. [9]: one from the subnetwork Alice-Diana1, featuring a total distance of 47.5 km
between the parties, and one from the subnetwork Bob-Charlie2, with a distance of 60.5 km between the
parties.

5.1. Inter-Process Communication

Using QNCC as the main communication hub, Alice and Bob are able to exchange messages between the two
parties, but also between the Java and the Python processes of one party. In this section, it is described how
the memory leak in QNCC was fixed and some considerations on the security of the network communication
are given.

5.1.1. Stopping the Memory Leak

As mentioned in section 4.1, QNCC had the problem of steadily using more and more memory with each
iteration. This became a serious problem, since after roughly 25 iterations there was no more free memory
space available of the development machine’s 16GBmemory in total, resulting in a freeze of the whole machine.
Only after some time the machine’s operating system — Arch Linux in this case — killed the processes of
QNCC so that the machine became usable again. This memory problem was investigated using an analysis
tool specifically designed for Java programs3. With this tool, the memory usage can be monitored besides
other quantities like CPU usage and total amount of classes.

In programming languages like Java, developers cannot allocate and deallocate memory space on their own,
but instead have this handled by Java. Whenever creating objects, Java automatically allocates the right
amount of memory. As soon as an object is no longer needed, deleting all references to it is all that is required
for developers to do. For example, a Java variable could contain a list of objects that points to a certain amount
of objects. As soon as the objects are no longer needed, a new empty list can be instantiated and assigned to
this variable. The previous list of objects is then no longer accessible from the Java program, however, its data
is still in the program’s memory. At this point, it simply “forgot” that this data exists and where it lies in the
memory.
1In the lab notebook, this measurement in the Alice-Diana subnetwork is called attempt 3.
2In the lab notebook, this measurement in the Bob-Charlie subnetwork is called attempt 1.
3VisualVM by Oracle Corporation

31

0 5 10 15 20 25 30 35 40

0

1

2

Time in minutes

M
em

or
y
us
ag

e
in

G
B w/ memory leak

w/o memory leak

Figure 5.1.: The diagram shows the memory usage of QNCC with the bug that led to the memory leak in blue,
and with the bug fixed in version 0.1.0 in orange. While the memory usage in orange represents a
complete run of QNCC over 160 iterations, the program had to be stopped for the memory usage
in blue after just 25 iterations because only little memory space was available anymore.

To prevent the memory size of Java programs to be ever increasing, programming languages like Java feature
a garbage collector. The garbage collector is regularly run and removes inaccessible objects from a program’s
memory. It does not, however, remove objects that will not be used again in a program but are still referenced
somewhere. The analysis tool used to analyze the memory problem allows to execute the garbage collector.
Doing this does not change much about the memory size of QNCC. It stays at a high level and continues to
increase with each iteration. To further analyze the memory problem, the analysis tool allows to do a heap
dump which essentially is a capture of the program’s memory at this point in time. This heap dump can be
directly analyzed in the analysis tool. When doing this for QNCC after some iterations, it can be seen that
the largest amount of classes is given by some class of the post-processing software. After running QNCC
for some iterations, the number of instances of this class stays around a level of 100 000 instances without
increasing in time. To find the part of the code using more and more memory space with each iteration, the
retained size of the program’s objects can be calculated. It gets apparent that it is the class KeyGenerator
that is ever increasing in size. This class got implemented in ref. [12] to manage the key generation process
in QNCC. The analysis tool allows to further inspect the object’s attributes and their sizes. This leads to the
final conclusion that it is the attributes of the type ObjectInputStream and ObjectOutputStream that
are using the vast majority of memory space.

The documentation of these classes describes this behavior of storing and remembering all sent objects. When
implementing the classical channel between Alice and Bob, the methods readObject of ObjectInput-
Stream and writeObject of ObjectOutputStream got used. If storing the objects is not wanted, the
methods readUnshared and writeUnshared should be used instead. The implementation in QNCC is
therefore switched to latter methods, resulting in a nearly constant memory usage of around 350MB, as
shown in figure 5.1. The sawtooth pattern that becomes apparent in this figure is a result of the garbage
collector. The garbage collector does not run continuously but only at specific points in time that depend on
the concrete implementation of the Java programming language on the host machine. Therefore, the memory
usage repeatedly increases until the garbage collector is run, which results in a drop of the used memory space.
While the version with the memory leak must be stopped after just 25 iterations due to the memory running
out of space, the version without the memory leak is able to analyze all 160 iterations without increasing
memory usage in size. The current version in orange is much faster than the old one in blue, because it uses
the optimized Java-Python communication channel that allows for faster analyses. With the memory usage
now being limited over time, QNCC is capable of handling an arbitrary amount of measurement iterations.

32

5.1.2. Security Considerations on Serialization

When working with serialization, it is very important to deserialize only trusted data, as stated in the docu-
mentation of ObjectInputStream4: “Warning: Deserialization of untrusted data is inherently dangerous
and should be avoided.”

Otherwise, attackers could abuse weaknesses in deserialization algorithms of any class present in the QNCC
code tree for attacks such as denial-of-service attacks [32] and even remote code execution [33]. When being
affected by such attacks, an attacker Eve sends a malicious message to its victim Bob that is deserialized by
him. The message is specifically crafted by Eve to abuse a weakness in one of the classes present in Bob’s
software. For denial-of-service attacks, deserializing this malicious message leads to a situation where Bob,
e.g., needs a lot of time to make some complicated calculation. During this time, Bob might not be able to
respond to other messages, thus the name denial of service. Attacks featuring remote code execution allow
executing arbitrary code on the victim’s machine. By this, not only could the victim’s machine and thus
potentially also its network be infected with some type of malware, but also all secret keys generated with
QKD could be stolen. These types of attacks are possible because an attacker is able to freely specify which
class a byte stream is deserialized to. Thus, any class present in the software that is Serializable offers
an additional attack surface. This is especially critical for weaknesses in the Java Standard Library, since these
weaknesses are present in any software written in Java.

Nevertheless, using deserialization with untrusted data does not inevitably mean being vulnerable to attacks. A
Java software could deserialize untrusted data without having any security vulnerability due to this. However,
deserializing untrusted data makes attacks much easier, since a single class containing an otherwise non-critical
weakness is enough to enable attacks such as the ones mentioned above.

Unfortunately, the classical communication channel of QNCC between Alice, Bob, and the source got imple-
mented using Java’s serialization algorithms, meaning that QNCC deserializes untrusted data and thus is
potentially vulnerable to these types of attacks. In appendix C, it is shown where QNCC deserializes untrusted
data. In this section, a solution to this problem is sketched that, however, does not get implemented as part of
this thesis, as the focus of this thesis is on making the BBM92 analysis software work on distinct computers
and not on hardening QNCC.

To switch the communication of the classical channel of QNCC between Alice, Bob, and the source to some
other protocol, first an analysis on which messages exactly are exchanged via this channel is needed. On
the one hand, there are messages generated by the Python software during timestamp analysis and key
sifting that are encoded to bytes in the Java-Python protocol presented in section 4.3.2. These messages are
not interpreted by Java, but simply forwarded between Alice’s and Bob’s Python code. Therefore, the new
protocol must be able to send and receive messages consisting of byte data. On the other hand, there are
messages exchanged by QNCC for managing the QKD session, such as Alice asking Bob for a QKD session, the
source informing Alice that photon-pair production has started, and so on. These types of messages can be
handled by defining a set of message types and their corresponding integer values, starting from 0 for the first
message type, 1 for the second, and so forth. Finally, the messages exchanged during post-processing are
strings that can be converted to bytes, too. To summarize, the protocol implemented for the Java-Python
communication is suitable for the Alice-Bob-source communication, as it allows sending messages indicating
its type and containing byte data. Replacing the protocol of this public communication channel is definitively
required, and until this is done, QNCC should not be publicly exposed to the Internet by, e.g., opening ports in
a network’s firewall. Due to the firewall, QNCC is protected against attacks from the Internet, and for research
and development, the computers running QNCC can be connected via a virtual private network (VPN).
4https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectInputStream.html

33

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/io/ObjectInputStream.html

Figure 5.2.: This table shows the relative offsets of the Alice-Diana subnetwork obtained via cross-correlation
of the timestamp lists in the first iteration with Bob’s left detector as the reference. To calculate
the fiber length differences, ∆s = Orel · c0/n was used with n = 1.4682 for the used wavelength
of λ = 1550nm [34].

Detector Orel ∆s

Alice left 33 930 831 ps 6.9 km
Alice right 33 950 337 ps 6.9 km

Bob right 18 867 ps 3.9m

5.2. Timestamp Analysis

When analyzing the timestamp lists as the first step of each QKD session, information about the offsets of
the detectors is obtained. This is discussed in section 5.2.1, before giving some security considerations on
time-bin sorting in section 5.2.2.

5.2.1. Detector Offsets

To find coincidences between Alice’s and Bob’s detectors, their timestamp lists must get aligned to each other.
This is done in the first iteration with a cross-correlation that uses Bob’s left detector as the reference detector,
as described in section 3.2.1. For the Alice-Diana subnetwork, this leads to the relative offsets from eq. (3.6)
and fiber length differences shown in table 5.2. For Alice, the values ∆s represent the length differences of
the fibers connecting Alice and Bob with the source. Bob’s offset corresponds to the additional distances
introduced due to the additional fiber length via the optical circulator and the different lengths of the cables
connecting the detectors with the time tagger.

In all subsequent iterations, the offsets of the detectors are recalibrated before the timestamps are sorted into
time bins. The first step in this reconfiguration is the calculation of the central peak offset of the reference
detector using the peak-finding tool. These values are used as reference offsets to pre-calibrate all other
detectors. Only then the peak-finding tool is used to obtain the central peak offsets of the other detectors.
The resulting values are shown in figure 5.3, where “Bob left” is the reference detector. Its values are 200
times larger than all other central peak offsets, which is a result of two effects: the restart of the time taggers
at the end of each iteration and the cutting of the timestamp lists every 90 s. 90 s is not a multiple of the
repetition cycle length 9.1ns, which leads to movements of the three-peak structure in every iteration. The
larger influence, however, is given by the time tagger restarts that were required in the setup due to hardware
problems of the time taggers [10]. These restarts take a different amount of time every time they are done.
With the clock recovery from ref. [9], the restarts are no longer necessary, so smaller variations of the offsets
are expected. The central peak offsets of the other detectors are much smaller with values around ±100 ps.
These mainly come from thermal expansion in the fibers.

The sum of these offsets leads to the total offsets Ot shown in figure 5.4. There, it becomes apparent that the
total offsets are dominated by the reference offsets. Apart from the displacement due to the relative offsets
from the initial iteration, plotting the total offsets of all four detectors on a scale of µs and ns results in the
same curve being shown four times. The differences in these curves is on a scale of ±100 ps and therefore not
visible.

34

0 50 100 150
Iteration

100

0

100
O

pe
ak

 in
 p

s
Alice left

0 50 100 150
Iteration

100

0

100

O
pe

ak
 in

 p
s

Alice right

0 50 100 150
Iteration

2000

0

2000

O
pe

ak
 in

 p
s

Bob left

0 50 100 150
Iteration

100

0

100

O
pe

ak
 in

 p
s

Bob right

Figure 5.3.: The central peak offsets Opeak of Alice’s and Bob’s left and right detectors in the Alice-Diana
subnetwork are shown. In this setup, Bob’s left detector is chosen as the reference detector. Still,
it has a central peak offset to center the peak structure and thus allow sorting events into time
bins.

0 20 40 60 80 100 120 140 160

33.93

33.94

33.95

Iteration

Al
ic
e’
s
off

se
ti
n
µ
s

0 20 40 60 80 100 120 140 160

0

10

20

Bo
b’
s
off

se
ti
n
ns

Alice and Bob right
Alice and Bob left

Figure 5.4.: The total offsets Ot = Orel +Oref +Opeak of Alice’s and Bob’s left and right detectors are shown.
In this setup, Bob’s left detector is chosen as the reference detector that is used to obtain offsets
for the other detectors. Therefore, the offsets of Bob’s left detector are close to 0. It is not exactly
0 due to the central peak offset of the reference detector. All other offsets are dominated by
these reference offsets. Therefore, all curves look identical on this scale and Alice’s and Bob’s
detector offsets cannot be distinguished from each other.

35

5.2.2. Security Considerations on Time-Bin Sorting

In an ideal setup, the offset calibration and the time-bin sorting presented in the previous sections is all that
is needed to start the key sifting process. In practice, however, the photon-pair production is not perfect,
attackers might try to undermine the security of the key exchange, and the single-photon detectors are
imperfect, too, because they, e.g, have nonzero dead times and dark count rates. Due to the nonzero dead
time, whenever a photon is detected by the detector it is not able to detect another photon for a certain amount
of time. Nonzero dark count rates lead to detections by the detector, even in the absence of photons. With
an imperfect photon-pair production, it might happen that both entangled photons get directed to a single
party instead of getting distributed among both parties, or that more than one photon pair gets created during
SPDC. When this happens, a party could detect an event on each detector within the same repetition cycle.
These events are filtered out by extending the algorithm presented in section 4.4. This extended algorithm is
not presented here, but it can be found in the class TimestampAnalysis. Essentially, it is a combination of
merges and intersections of the library sortednp. For the data analyzed in this thesis, there are between
100 and 200 of such events that get filtered out of in total 6500 sifted key events.

However, two events with same repetition cycle number in two detectors’ timestamp lists are only part of
the problem. Philipp Kleinpaß elaborated in his Master thesis in ref. [35] on the vulnerability of the BBM92
protocol regarding using events from one detector while the other detector is in its dead time. In the setup
of this thesis, the detectors are configured with a dead time of 10µs while a repetition cycle has a period of
9.1ns [10]. This means that after one detector clicked, there are about 1000 repetition cycles where only the
other detector is capable of detecting photons. To mitigate this problem, events that got detected during the
dead time of another detector should get filtered out before sorting timestamps into time bins. Obviously, this
would lead to a lower sifted and thus also to a lower secure key rate, but would therefore eliminate such a
loophole.

5.3. Sifted and Secure Keys

Having all steps required for a QKD session implemented in QNCC over the course of this thesis allows Alice
and Bob obtain a shared secret key using historical measurement data obtained with the legacy measurement
scripts. The measurement data of the Alice-Diana subnetwork primarily used in this thesis to test QNCC
consists of 160 iterations, each with a period of 90 s and timestamp file sizes around 15MB to 20MB. Running
QNCC with this measurement data takes around 35 minutes to analyze all iterations on a computer with
Arch Linux as the operating system, 16 GB of memory, and a 4-core Intel Core i7-8550U. This means that
analyzing a single iteration takes around 13 s which is well below the 90-second limit. In figure 5.5, the sifted
and secure key rates are shown. The sifted key rates lie around 6500 bit in 90 s, or 72 bit/s. The secure key
rate lies around 2500 bit in 90 s, or 28 bit/s. In contrast to the sifted key rate, the secure key rate shows large
variations with rates as low as 1200 bit in 90 s (13 bit/s) and rates as high as 3700 bit in 90 s (41 bit/s). This
variation is a result of the dependency of the number of parity bits M from eq. (4.11) on the QBER. It is
empirically found that the uncertainty-corrected QBER together with a desired LDPC code efficiency of f = 1.8
allows Bob to error-correct the sifted key with the amount of parity bits sent by Alice. For other data sets
than the Alice-Diana subnetwork’s one, different LDPC code efficiencies might be required. In particular, for
the measurement data of the Bob-Charlie subnetwork shown in figure 5.7 there are two iterations 5 and 26
where the secure key rate drops to 0. If this happens, Alice and Bob discard the iteration and store no secret
key to their database. Looking at the QBER values in figure 5.8, it can be seen that these iterations had high
QBER values in the 99% sample and even higher values in the 12% sample which led to too much parity bits

36

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

2,000

4,000

6,000

Iteration

Ke
y
ra
te

in
bi
tp

er
90

s

Sifted
Secure

Figure 5.5.: The diagram shows the secure and sifted key lengths during an analysis period of 160 iterations
of the subnetwork Alice-Diana. The sifted key rate shows a small variation around 6500 bit in
90 s, while the secure key rate shows large variations around 2500 bit in 90 s.

being shared. As stated in section 2.1.4, the limit for generating secure keys is a QBER of 11.5%. Due to the
LDPC code efficiency of f = 1.8, already lower QBER values lead to this limit getting crossed. Therefore, it is
important to select the right amount of parity bits that is neither too high nor too low.

In figure 5.6, the obtained QBER value for different sizes of subsets is shown. In orange, QBER values are
shown that are determined on a random 12% subset of the sifted key with the uncertainty of eq. (4.14).
These QBER values are used to determine the number of parity bits and thus error-correct the sifted key. In
blue, the QBER values are shown as determined on a 99% subset of the sifted key. It becomes apparent that
the QBER values in blue still slightly vary around a level of 2.5% with values as high as 3% and as low as 2%.
Nevertheless, the QBER values obtained on the 12% subset vary much more with values as low as 1.1% and as
high as 3.9%. In average, both sets of QBER values lie around 2.5%. To not send too few parity bits, the sum
QBER+∆QBER is used when determining the number of parity bits. In figures 5.6 and 5.8, it can be seen
that by adding ∆QBER the QBER value obtained is above the QBER values in blue in most of the iterations,
but there are still iterations where the value in orange is below the QBER value in blue. This means that most
of the time enough parity bits would have been sent with a desired LDPC code efficiency closer to 1, but the
other values required higher LDPC code efficiencies for error-correction to complete.

In figure 5.9, the correlation coefficient is shown as obtained from random 12% and 99% subsets in the
Alice-Diana subnetwork. The correlation coefficient is used to adapt the temperatures of the interferometers.
Like the QBER, the correlation coefficient on the 12% subset shows larger variations than on the 99% subset.
In the legacy scripts, the temperatures are only adapted every second iteration to wait for the temperature
change to distribute in the interferometer. When no longer obtaining the correlation coefficient from the
whole sifted key, as in the legacy scripts, but from a subset, it might be necessary to wait even longer than two
iterations when adapting the temperatures. Otherwise, the temperature might be adjusted due to statistical
fluctuations even though there is no real phase drift in the interferometers. One possible option is to only
adapt the temperatures if two correlation coefficients in subsequent iterations indicated such a necessity. By
this, overcorrecting can be avoided.

37

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

1

1.5

2

2.5

3

3.5

4

4.5

Iteration

Q
BE

R
in

pe
rc
en

t

99 percent subset
12 percent subset

Figure 5.6.: This diagram shows the QBER of the Alice-Diana subnetwork as obtained on a subset of 12% of
the sifted key bits with a ∆QBER uncertainty and on a subset of 99%. For the error-correction
algorithm to work, it is important to use a value larger than the blue QBER value when determining
the number of parity bits.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

0

1,000

2,000

3,000

4,000

5,000

Iteration

Ke
y
ra
te

in
bi
tp

er
90

s

Sifted
Secure

Figure 5.7.: The diagram shows the secure and sifted key lengths during an analysis period of 160 iterations
of the subnetwork Bob-Charlie. The sifted key rate shows a small variation around 4500 bit in
90 s, while the secure key rate shows large variations around 1500 bit in 90 s. In iterations 5 and
26, too much parity bits were exchanged and thus no secure key could be generated.

38

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

1

2

3

4

5

6

Iteration

Q
BE

R
in

pe
rc
en

t

99 percent subset
12 percent subset

Figure 5.8.: This diagram shows the QBER of the Bob-Charlie subnetwork as obtained on a subset of 12%
with a ∆QBER uncertainty and on a subset of 99%. For the error-correction algorithm to work, it
is important to use a value equal to or larger than the blue QBER value when determining the
number of parity bits.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

−0.98

−0.96

−0.94

−0.92

−0.9

Iteration

Co
rr
el
at
io
n
Co

effi
ci
en

t 99 percent subset
12 percent subset

Figure 5.9.: This diagram shows the correlation coefficient C as obtained in the Alice-Diana subnetwork on a
subset of 12% and on a subset of 99%.

39

QNCC got tested on more historical data sets than shown here and was able to produce secure keys with
comparable rates in all cases. While the development of QNCC happens on Linux, the computers running
the measurement scripts must run Windows since the time taggers’ software is only available on Windows.
Running QNCC on Windows works and produces the same results as on Linux. Since both Python and Java are
not pre-compiled to native machine code, the same binary files of QNCC can be used on Windows and Linux.
Using the key storage functionalities of QNCC, it is seen that Alice and Bob obtain the same private keys. In
the graphical user interface, a chat between Alice and Bob can be started that transfers end-to-end-encrypted
messages using the secure keys obtained from the QKD session.

40

6. Summary and Outlook

Over the course of this thesis, a software got developed that implements the BBM92 protocol based on
previously recorded measurement data which allows two communicating parties to establish a shared secret key
using Quantum Key Distribution (QKD) on Windows- and Linux-based operating systems. Combining several
previous works, the software uses network connections implemented in ref. [12] as means of communication
between Alice, Bob, and the source, which allows all of them to be in distinct places. The post-processing
software developed in ref. [11] got integrated into this thesis’ software to obtain secret keys. Taking around
13 s to generate a secret key from measurement data collected over a period of 90 s, it produces secret keys at
a rate of 28 bit/s out of a sifted key rate of 72 bit/s with QBER values around 2.5%. The data used for this
QKD session got recorded in October 2021 using a fiber deployed between Darmstadt and Griesheim with a
length of 26.8 km, resulting in a total distance of 47.5 km between Alice and Bob (subnetwork Alice-Diana in
ref. [9]).

The software got implemented using the Quantum Network Control Center (QNCC) developed in ref. [12]
as a basis. QNCC is written in Java, requiring a communication channel to the Python software developed
during this thesis that generates the sifted key and eventually will control the measurement devices. This
communication channel got implemented in this thesis using same-device network connections, removing the
slow, insecure, and unsuitable file-system communication originally implemented in ref. [12]. Reusing parts of
code from the previous setup, the software automatically calibrates detector offsets using cross-correlation and
peak-finding tools. The subsequent time-bin sorting and key sifting of the BBM92 protocol got implemented
from scratch using suitable Python libraries1 designed to work with large data sets. During the key sifting,
invalid events are filtered out that could otherwise lead to attacks against the QKD session. Finally, the
obtained sifted keys are error-corrected and privacy-amplified using the post-processing code implemented
in ref. [11]. This results in identical secure keys being obtained by both parties that can be used by other
programs for symmetric encryption like, e.g., AES. QNCC allows to directly chat with the other party from
within the graphical user interface using the secret keys obtained during the QKD session.

Having this implementation of the data analysis steps of BBM92 in place, the next step is to decentralize
the management of the measurement devices. The scripts used for this in previous setups only work in a
centralized mode where all measurement devices are connected to a single computer. Once the measurement
devices can be controlled from separate computers in a decentralized setup, QNCC can be used to run QKD
sessions among parties in distinct places. Before this thesis, the QKD setup was not able at all to be used in
distinct places because the analysis steps required the full knowledge of all parties’ measurement results. As
shown in ref. [9], the setup is able to connect up to 34 parties with distances of more than 100 km which can
finally also be demonstrated in a decentralized setup once the measurement-device control is in place.

Another remaining question is the estimation of values for QBER and correlation coefficient C based on the
knowledge of only a subset of the sifted key. Previous centralized setups used the knowledge of the complete
sifted key to obtain a value for C and adapt interferometers’ temperatures based on this value. Comparing the
1numpy and sortednp

41

whole sifted key is not possible in decentralized setups, since the communication channel used to compare
the key is assumed to be public and non-confidential. Therefore, techniques must be found that allow strong
estimations for QBER and C that are not too much influenced by statistical fluctuations. Once these techniques
are developed, secure key rates are expected to increase significantly.

If QNCC should ever get used in real-world applications, some more considerations and modifications have to
be made. In particular, a threat model is needed that clearly states what an attacker is capable of doing and
which type of attacks are considered to be withstood by QNCC. Based on this threat model, the severeness of
potential vulnerabilities like the one presented in section 5.1.2 can be assessed and addressed, if necessary.
Additionally, QNCC should not use RSA but some quantum-resistant algorithm for authentication, since RSA is
broken by quantum computers. Besides these security concerns, QNCC should be usable without a graphical
user interface to allow it to be included in other programs as a library offering services for obtaining secret
keys using QKD.

42

A. Setting up the Quantum Network Control Center

The Quantum Network Control Center (QNCC) is a software written in Java and Python, with additional
libraries as dependencies in both languages. The Java dependencies are recorded in the file pom.xml, which
the building tool Maven uses to automatically download and include these dependencies when building the
software. Similarly, the Python dependencies are recorded in the file src/main/python/requirements.txt which
Python’s dependency manager pip uses to automatically install all dependencies. For the Python dependencies
on Windows to work, the Visual Studio Build Tools are required to be installed on the machine. In the
README.md file of QNCC it is recorded how to install them.

Once the Python dependencies are installed, there are two ways to start QNCC: one is to execute the run
configuration “Run all” or “Build .jar” in the integrated development environment, Intellij IDEA, and the other is
to build QNCC on the command-line using the building tool Maven by calling mvn package. The generated
.jar file can be found in the directory target and can be executed on any Windows or Linux machine. QNCC is
started with that .jar file by calling

java −j a r QuantumnetworkControlcenter−0.1−jar−with−dependencies . j a r

The code of QNCC is stored in the project’s GitLab group on the GitLab instance of RWTH Aachen. By installing
Git on the developer’s machine, the code can be downloaded onto the machine by calling git clone [url].
It is strongly recommended to make use of Git’s and GitLab’s functionalities in order to facilitate cooperative
work on the code of QNCC.

43

B. Configuring the Quantum Network Control Center

The Python software developed in this thesis allows to configure various different parameters via a configuration
file. The file is found at src/main/python/configuration.py and can be modified with a text editor to match the
experiment’s needs. All configuration parameters are described in this appendix.

KEY_GENERATION_MODE
Possible values: 0 or 1
Explanation: 0 starts a key generation that controls the experimental setup and obtains data frommeasurement
devices, while 1 works without any experimental setup by using historical data.
Notes: Mode 0 is not usable in this thesis, but to be implemented by future students. Mode 1 requires historical
data to be present in the folder historical of the user’s QNCC directory. QNCC can be adapted to the structure
of the historical timestamp data in the file src/main/python/measuring/historical_measuring.py.

DEBUG
Possible values: True or False
Explanation: Determines whether debugging information is logged to the terminal.

REPETITION_TIME
Possible values: 1 positive integer
Explanation: This integer is used to analyze the timestamps for time-bin sorting. With the setup of this thesis,
it is set to 9100 ps.

BIN_BOUNDS
Possible values: A Python tuple with three tuples, each containing two positive integers with values between
0 and REPETITION_TIME.
Explanation: These integers are used as boundaries for the early, central, and late time bins during time-bin
sorting. In this thesis, its values are 1020 and 2020, 4050 and 5050, and 7080 and 8080.
Notes: The integers must have the same unit as REPETITION_TIME.

INITIAL_NESTING_OFFSETS
Possible values: Tuple containing an arbitrary amount of integers, all with values between 0 and REPETI-
TION_TIME.
Explanation: These integers are used to shift the timestamps when analyzing data with dense packing of pulse
sequences. The length of the tuple implicitly defines the nesting level. In this thesis, its values are 0 and 4050.
Notes: The integers must have the same unit as REPETITION_TIME.

ID900_RESOLUTION
Possible values: 1 positive integer
Explanation: Determines the resolution of the time tagger. In this thesis, it is set to 13.
Notes: The integer must have the same unit as REPETITION_TIME.

45

RELATIVE_PEAK_PROMINENCE
Possible values: 1 float between 0 and 1
Explanation: Used when finding the central peak offsets. In this thesis, it is set to 0.8.
Notes: Value should be larger than 0.5, since otherwise satellite peaks would be identified that are roughly
half the size of the central peak.

CC_FIRST_BLOCK_FRACTION_US
Possible values: 1 float between 0 and 1
Explanation: Determines the fraction of our timestamp data analyzed when cross-correlating in the initial
calibration. In this thesis, it is set to 0.05.

CC_FIRST_BLOCK_FRACTION_THEY
Possible values: 1 float between 0 and 1
Explanation: Determines the fraction of the other party’s timestamp data analyzed when cross-correlating in
the initial calibration. In this thesis, it is set to 0.05.

46

C. Code Sections where Untrusted Data is Deserialized

In line 142 of the class ConnectionManager in the package networkConnection1, incoming connections
from the network on the server socket of QNCC get accepted and transferred into a new network socket:

c l i e n t So cke t = masterServerSocket . accept () ;

In line 153 of the same class, this newly created socket gets transferred to an object of the class Connection-
EndpointServerHandler:

cesh = new Connect ionEndpointServerHandler (c l i en tSocke t , th i s) ;

In line 100, it gets configured to interpret data flowing into this socket with ObjectInputStream:

s e r v e r In = new ObjectInputStream (c l i en t So cke t . getInputStream ()) ;

Finally, in line 107 of class ConnectionEndpointServerHandler, any data coming into QNCC from the
network via this socket gets deserialized using the method readUnshared:

receivedMessage = (NetworkPackage) s e r ve r In . readUnshared () ;

This is the place where attackers could start potential attacks. While the code tries to interpret the object
deserialized by readUnshared as an object of the type NetworkPackage, attackers can choose which class
an object is deserialized to and thus abuse weaknesses of any other class, not just NetworkPackage. If the
class with that weakness is not a subtype of NetworkPackage, QNCC would possibly terminate at this point,
but this would already be too late in case of an attack.

1All line numbers, code samples, and class and package names refer to version 0.1.0 of QNCC.

47

List of Figures

2.1. Experimental setup . 6
2.2. Simplified arrival histogram . 6

3.1. Setup scheme of receivers . 12
3.2. Arrival histogram with data from Alice-Diana subnetwork . 12
3.3. State diagram of Quantum Network Control Center (QNCC) 13

4.1. Class diagrams of AbstractKeyGeneration and its subclasses 19
4.2. Sequence diagram of QNCC in first iteration . 21
4.3. Sequence diagram of QNCC in first iteration . 22

5.1. Memory usage before and after bug with memory leak . 32
5.2. Relative offsets in the Alice-Diana subnetwork . 34
5.3. Peak offsets in the Alice-Diana subnetwork . 35
5.4. Total offsets in the Alice-Diana subnetwork . 35
5.5. Secure and sifted key rates in the Alice-Diana subnetwork . 37
5.6. QBER on 12% and 99% subsets in the Alice-Diana subnetwork 38
5.7. Secure and sifted key rates in the Bob-Charlie subnetwork . 38
5.8. QBER on 12% and 99% subsets in the Bob-Charlie subnetwork 39
5.9. Correlation Coefficient C on 12% and 99% subsets in the Alice-Diana subnetwork 39

49

Bibliography

[1] Suetonius. “Exstant et Ad Ciceronem, Item Ad Familiares Domesticis de Rebus, in Quibus, Si qua
Occultius Perferenda Erant, per Notas Scripsit, Id Est Sic Structo Litterarum Ordine, Ut Nullum
Verbum Effici Posset; Quae Si Qui Investigare et Persequi Velit, Quartam Elementorum Litteram, Id Est
D pro A et Perinde Reliquas Commutet.” In: Vita Divi Julii. 121, p. 56.6 (cit. on pp. 1, 3).

[2] Han-Sen Zhong et al. “Quantum Computational Advantage Using Photons”.
In: Science 370.6523 (Dec. 2020), pp. 1460–1463. doi: 10.1126/science.abe8770
(cit. on pp. 1, 3).

[3] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Nov. 1994, pp. 124–134.
doi: 10.1109/SFCS.1994.365700 (cit. on pp. 1, 5).

[4] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmén, eds. Post-Quantum Cryptography.
Berlin: Springer, 2009. isbn: 978-3-540-88701-0 (cit. on p. 1).

[5] Johannes Buchmann, Kristin Lauter, and Michele Mosca.
“Postquantum Cryptography—State of the Art”. In: IEEE Security Privacy 15.4 (2017), pp. 12–13.
issn: 1558-4046. doi: 10.1109/MSP.2017.3151326 (cit. on p. 1).

[6] Tommaso Gagliardoni, Juliane Krämer, and Patrick Struck.
“Quantum Indistinguishability for Public Key Encryption”. In: IACR Cryptol. ePrint Arch. 2020.
doi: 10.1007/978-3-030-81293-5_24 (cit. on p. 1).

[7] Johannes Buchmann. Einführung in Die Kryptographie. Sixth. Springer-Lehrbuch.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. isbn: 978-3-642-39774-5.
doi: 10.1007/978-3-642-39775-2 (cit. on pp. 1, 4, 18).

[8] Nicolas Gisin et al. “Quantum Cryptography”.
In: Reviews of Modern Physics 74.1 (Mar. 2002), pp. 145–195. issn: 0034-6861, 1539-0756.
doi: 10.1103/RevModPhys.74.145 (cit. on p. 1).

[9] Erik Fitzke et al. “Scalable Network for Simultaneous Pairwise Quantum Key Distribution via
Entanglement-Based Time-Bin Coding”. In: PRX Quantum 3.2 (May 2022), p. 020341.
doi: 10.1103/PRXQuantum.3.020341 (cit. on pp. 1, 6, 9, 11, 12, 15, 31, 34, 41).

[10] Lucas Bialowons. “Completion of a 4-Party Time-bin Entanglement QKD System”.
Master thesis. TU Darmstadt, Aug. 2021 (cit. on pp. 1, 7, 11, 13, 15, 17, 25, 27, 34, 36).

[11] Jendrik Seip. “Fehlerkorrektur und Schlüsselaufbereitung für den Quantenschlüsselaustausch”.
Master thesis. TU Darmstadt, Feb. 2021 (cit. on pp. 2, 9, 17, 23, 28, 41).

[12] Jonas Hühne et al. Quantum Network Control Center - User Guide. Tech. rep. TU Darmstadt, Mar. 2022
(cit. on pp. 2, 16, 17, 20, 23, 32, 41).

51

https://doi.org/10.1126/science.abe8770
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/MSP.2017.3151326
https://doi.org/10.1007/978-3-030-81293-5_24
https://doi.org/10.1007/978-3-642-39775-2
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/PRXQuantum.3.020341

[13] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. 2015.
isbn: 978-1-4665-7026-9 (cit. on p. 3).

[14] C. E. Shannon. “Communication Theory of Secrecy Systems”.
In: The Bell System Technical Journal 28.4 (Oct. 1949), pp. 656–715. issn: 0005-8580.
doi: 10.1002/j.1538-7305.1949.tb00928.x (cit. on p. 3).

[15] Matt Curtin. Brute Force: Cracking the Data Encryption Standard. New York: Copernicus Books, 2005.
isbn: 978-0-387-27160-6 (cit. on p. 4).

[16] Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael”.
In: Smart Card Research and Applications. Ed. by Jean-Jacques Quisquater and Bruce Schneier.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 277–284.
isbn: 978-3-540-44534-0. doi: 10.1007/10721064_26 (cit. on p. 4).

[17] R. L. Rivest, A. Shamir, and L. Adleman.
“A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”.
In: Communications of the ACM 21.2 (Feb. 1978), pp. 120–126. issn: 0001-0782.
doi: 10.1145/359340.359342 (cit. on p. 4).

[18] Charles H. Bennett, Gilles Brassard, and N. David Mermin.
“Quantum Cryptography without Bell’s Theorem”.
In: Physical Review Letters 68.5 (Feb. 1992), pp. 557–559. doi: 10.1103/PhysRevLett.68.557
(cit. on pp. 5, 8).

[19] Artur K. Ekert. “Quantum Cryptography Based on Bell’s Theorem”.
In: Physical Review Letters 67.6 (Aug. 1991), pp. 661–663. doi: 10.1103/PhysRevLett.67.661
(cit. on p. 5).

[20] Jürgen Brendel et al.
“Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication”.
In: Physical Review Letters 82.12 (Mar. 1999), pp. 2594–2597.
doi: 10.1103/PhysRevLett.82.2594 (cit. on p. 5).

[21] Wolfgang Tittel et al. “Quantum Cryptography Using Entangled Photons in Energy-Time Bell States”.
In: Physical Review Letters 84.20 (May 2000), pp. 4737–4740.
doi: 10.1103/PhysRevLett.84.4737 (cit. on p. 5).

[22] J. D. Franson. “Bell Inequality for Position and Time”.
In: Physical Review Letters 62.19 (May 1989), pp. 2205–2208.
doi: 10.1103/PhysRevLett.62.2205 (cit. on p. 7).

[23] I. Marcikic et al.
“Time-Bin Entangled Qubits for Quantum Communication Created by Femtosecond Pulses”.
In: Physical Review A 66.6 (Dec. 2002), p. 062308. doi: 10.1103/PhysRevA.66.062308
(cit. on p. 7).

[24] James L. Park. “The Concept of Transition in Quantum Mechanics”.
In: Foundations of Physics 1.1 (Mar. 1970), pp. 23–33. issn: 1572-9516. doi: 10.1007/BF00708652
(cit. on p. 8).

[25] W. K. Wootters and W. H. Zurek. “A Single Quantum Cannot Be Cloned”.
In: Nature 299.5886 (Oct. 1982), pp. 802–803. issn: 1476-4687. doi: 10.1038/299802a0
(cit. on p. 8).

[26] Dennis Dieks. “Communication by EPR Devices”. In: Physics Letters A 92.6 (Nov. 1982), pp. 271–272.
issn: 0375-9601. doi: 10.1016/0375-9601(82)90084-6 (cit. on p. 8).

52

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/10721064_26
https://doi.org/10.1145/359340.359342
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.82.2594
https://doi.org/10.1103/PhysRevLett.84.4737
https://doi.org/10.1103/PhysRevLett.62.2205
https://doi.org/10.1103/PhysRevA.66.062308
https://doi.org/10.1007/BF00708652
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/0375-9601(82)90084-6

[27] Norbert Lütkenhaus. “Estimates for Practical Quantum Cryptography”.
In: Physical Review A 59.5 (May 1999), pp. 3301–3319. doi: 10.1103/PhysRevA.59.3301
(cit. on pp. 9, 29).

[28] Tim Berners-Lee. Information Management: A Proposal. Mar. 1989.
url: https://www.w3.org/History/1989/proposal.html (visited on 06/16/2022)
(cit. on p. 9).

[29] Vinton Cerf and R. Kahn. “A Protocol for Packet Network Intercommunication”.
In: IEEE Transactions on Communications 22.5 (May 1974), pp. 637–648. issn: 1558-0857.
doi: 10.1109/TCOM.1974.1092259 (cit. on p. 9).

[30] Andrew S. Tanenbaum, Nick Feamster, and David Wetherall. Computer Networks.
Sixth edition, global edition. Harlow, United Kingdom: Pearson, 2021. isbn: 978-1-292-37401-7
(cit. on p. 9).

[31] Lucas Bialowons et al. A Scalable Multi-User QKD Hub for Entanglement-Based Phase-Time Coding.
OPTICA Quantum Information and Measurement VI, Jan. 2021 (cit. on p. 12).

[32] Marc Schönefeld. Pentesting J2EE. Black Hat USA 2006, Jan. 2006.
url: https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-
Schoenefeld-up.pdf (visited on 07/21/2022) (cit. on p. 33).

[33] Chris Frohoff and Gabriel Lawrence. Marshalling Pickles. AppSec California 2015, Jan. 2015.
url: https://frohoff.github.io/appseccali-marshalling-pickles/ (visited on
07/21/2022) (cit. on p. 33).

[34] Corning® SMF-28® Ultra Optical Fiber. Nov. 2021.
url: https://www.corning.com/media/worldwide/coc/documents/Fiber/product-
information-sheets/PI-1424-AEN.pdf (visited on 07/28/2022) (cit. on p. 34).

[35] Philipp Kleinpaß.
“Description and Simulation of Entanglement-Based Phase-Time Quantum Key Distribution”.
Master thesis. TU Darmstadt, June 2022 (cit. on p. 36).

53

https://doi.org/10.1103/PhysRevA.59.3301
https://www.w3.org/History/1989/proposal.html
https://doi.org/10.1109/TCOM.1974.1092259
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://frohoff.github.io/appseccali-marshalling-pickles/
https://www.corning.com/media/worldwide/coc/documents/Fiber/product-information-sheets/PI-1424-AEN.pdf
https://www.corning.com/media/worldwide/coc/documents/Fiber/product-information-sheets/PI-1424-AEN.pdf

	Glossary
	Introduction
	Preliminaries
	Modern Cryptography
	Encryption with One-Time Pads
	Encryption with AES
	Authentication with RSA
	Quantum Key Distribution with BBM92

	Computer Networks
	Network Protocols and Layers
	Network Sockets

	Setup
	Experimental Setup
	Analysis of Measurement Data
	Offset Calibration
	Sorting Timestamps into Time Bins
	Subsequent Analysis

	Inter-Process Communication

	Details on the Implementation
	Modifications to the Previous Software
	Software Architecture
	Inter-Process Communication
	Communication between Alice, Bob, and the Source
	Communication between Java and Python

	Timestamp Analysis
	Key Sifting
	Error Correction and Privacy Amplification

	Results
	Inter-Process Communication
	Stopping the Memory Leak
	Security Considerations on Serialization

	Timestamp Analysis
	Detector Offsets
	Security Considerations on Time-Bin Sorting

	Sifted and Secure Keys

	Summary and Outlook
	Setting up the Quantum Network Control Center
	Configuring the Quantum Network Control Center
	Code Sections where Untrusted Data is Deserialized
	List of Figures
	Bibliography

